Bounds on Initial Coefficients for a Certain New Subclass of Bi-univalent Functions by Means of Faber Polynomial Expansions

被引:0
|
作者
F. Müge Sakar
S. Melike Aydoğan
机构
[1] Batman University,Department of Business Administration
[2] Istanbul Technical University,Department of Mathematics
来源
Mathematics in Computer Science | 2019年 / 13卷
关键词
Analytic functions; Univalent functions; Bi-univalent functions; Faber polynomial expansions; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new subclass TΣ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{\varSigma }(\mu )$$\end{document} of bi univalent functions belong to Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} in the open unit disc U=z:z∈Cand|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}} =\left\{ z\, :\,\,z\in {\mathcal {C}}\,\,and \,\, |z| <1\right\} $$\end{document}. Then, we use the concepts of Faber polynomial expansions to find upper bound for the general coefficient of such functions belongs to the defined class. Further, for the functions in this subclass we obtain bound on first three coefficients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document}, |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document} and |a4|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{4}|$$\end{document}. We hope that this paper will inspire future researchers in applying our approach to other related problems.
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [21] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Wurenqiqige
    Li Shu-hai
    Dashdondog, Tsedenbayar
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2021, 36 (02) : 278 - 286
  • [22] On a subclass of bi-univalent functions defined by convex combination of order α with the Faber polynomial expansion
    Shu-hai Wurenqiqige
    Tsedenbayar Li
    Applied Mathematics-A Journal of Chinese Universities, 2021, 36 : 278 - 286
  • [23] COEFFICIENTS BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS DEFINED BY AL-OBOUDI DIFFERENTIAL OPERATOR
    Uyanik, Neslihan
    Gokkurt Ozdemir, Ozdemir
    THERMAL SCIENCE, 2022, 26 (SpecialIssue2): : S583 - S589
  • [24] A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator
    Breaz, Daniel
    Orhan, Halit
    Cotirla, Luminita-Ioana
    Arikan, Hava
    AXIOMS, 2023, 12 (02)
  • [25] ESTIMATE FOR INITIAL MACLAURIN COEFFICIENTS OF CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS
    Alkahtani, Badr S.
    Goswami, Pranay
    Bulboaca, Teodor
    MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) : 739 - 748
  • [26] A new general subclass of analytic bi-univalent functions
    Bulut, Serap
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (03) : 1330 - 1338
  • [27] Note on bounds on the coefficients of a subclass of m-fold symmetric bi-univalent functions
    Zireh, Ahmad
    Hajiparvaneh, Saideh
    Bulut, Serap
    JOURNAL OF APPLIED ANALYSIS, 2024, 30 (01) : 187 - 195
  • [28] Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions
    Jia, Zeya
    Khan, Nazar
    Khan, Shahid
    Khan, Bilal
    AIMS MATHEMATICS, 2022, 7 (02): : 2512 - 2528
  • [29] Initial Coefficient Bounds for a Subclass of m-fold Symmetric Bi-univalent Functions
    Zireh, Ahmad
    Hajiparvaneh, Saideh
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (04): : 153 - 164
  • [30] SECOND HANKEL DETERMINANT FOR A CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS
    Frasin, B. A.
    Vijaya, K.
    Kasthuri, M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, 7 (02): : 185 - 199