Bounds on Initial Coefficients for a Certain New Subclass of Bi-univalent Functions by Means of Faber Polynomial Expansions

被引:0
|
作者
F. Müge Sakar
S. Melike Aydoğan
机构
[1] Batman University,Department of Business Administration
[2] Istanbul Technical University,Department of Mathematics
来源
Mathematics in Computer Science | 2019年 / 13卷
关键词
Analytic functions; Univalent functions; Bi-univalent functions; Faber polynomial expansions; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a new subclass TΣ(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {T}}_{\varSigma }(\mu )$$\end{document} of bi univalent functions belong to Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varSigma $$\end{document} in the open unit disc U=z:z∈Cand|z|<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {U}} =\left\{ z\, :\,\,z\in {\mathcal {C}}\,\,and \,\, |z| <1\right\} $$\end{document}. Then, we use the concepts of Faber polynomial expansions to find upper bound for the general coefficient of such functions belongs to the defined class. Further, for the functions in this subclass we obtain bound on first three coefficients |a2|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{2}|$$\end{document}, |a3|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{3}|$$\end{document} and |a4|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|a_{4}|$$\end{document}. We hope that this paper will inspire future researchers in applying our approach to other related problems.
引用
收藏
页码:441 / 447
页数:6
相关论文
共 50 条
  • [1] Bounds on Initial Coefficients for a Certain New Subclass of Bi-univalent Functions by Means of Faber Polynomial Expansions
    Sakar, F. Muge
    Aydogan, S. Melike
    MATHEMATICS IN COMPUTER SCIENCE, 2019, 13 (03) : 441 - 447
  • [2] Faber polynomial coefficient bounds for a subclass of bi-univalent functions
    Altnkaya, Sahsene
    Yalcin, Sibel
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 37 - 44
  • [3] Faber Polynomial Coefficient Estimates on a Subclass of Bi-Univalent Functions
    Xiaoyuan WANG
    Zhiren WANG
    Li YIN
    Journal of Mathematical Research with Applications, 2018, 38 (05) : 465 - 470
  • [4] A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers
    Altinkaya, Sahsene
    Yalcin, Sibel
    Cakmak, Serkan
    MATHEMATICS, 2019, 7 (02)
  • [5] Faber Polynomial Coefficient Estimates for a Subclass of Analytic Bi-univalent Functions
    Bulut, Serap
    FILOMAT, 2016, 30 (06) : 1567 - 1575
  • [6] COEFFICIENT BOUNDS FOR A CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS
    Mustafa, Nizami
    Nezir, Veysel
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1492 - 1505
  • [7] COEFFICIENT BOUNDS USING FABER POLYNOMIAL FOR A NEW SUBCLASS OF MEROMORPHIC BI-UNIVALENT
    Janani, Thambidurai
    Yalcin, Sibel
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (04): : 851 - 858
  • [8] BOUNDS FOR INITIAL MACLAURIN COEFFICIENTS OF A SUBCLASS OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH SUBORDINATION
    Motamednezhad, Ahmad
    Nosrati, Shahpour
    Zaker, Sima
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 125 - 135
  • [9] Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion
    Srivastava, Hari Mohan
    Motamednezhad, Ahmad
    Salehian, Safa
    AXIOMS, 2021, 10 (01) : 1 - 13
  • [10] GENERALIZED LAGUERRE POLYNOMIAL BOUNDS FOR SUBCLASS OF BI-UNIVALENT FUNCTIONS
    Panigrahi, Trailokya
    Sokol, Janusz
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 14 (01): : 127 - 140