On the body of ample angles of asymptotically log Fano varieties

被引:0
|
作者
Paolo Cascini
Jesus Martinez-Garcia
Yanir A. Rubinstein
机构
[1] Imperial College,
[2] University of Essex,undefined
[3] University of Maryland,undefined
关键词
Asymptotically log Fano varieties; Asymptotically log Del Pezzo surfaces; Body of ample angles; 14J45; 14J26 (primary); 14J10; 14E05 (secondary);
D O I
暂无
中图分类号
学科分类号
摘要
In dimension two, we reduce the classification problem for asymptotically log Fano pairs to the problem of determining generality conditions on certain blow-ups. In any dimension, we prove the rationality of the body of ample angles of an asymptotically log Fano pair, i.e., these convex bodies are always rational polytopes.
引用
收藏
页码:773 / 790
页数:17
相关论文
共 50 条
  • [1] On the body of ample angles of asymptotically log Fano varieties
    Cascini, Paolo
    Martinez-Garcia, Jesus
    Rubinstein, Yanir A.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 773 - 790
  • [2] Asymptotically log Fano varieties
    Cheltsov, Ivan A.
    Rubinstein, Yanir A.
    ADVANCES IN MATHEMATICS, 2015, 285 : 1241 - 1300
  • [3] SIMPLE NORMAL CROSSING FANO VARIETIES AND LOG FANO MANIFOLDS
    Fujita, Kento
    NAGOYA MATHEMATICAL JOURNAL, 2014, 214 : 95 - 123
  • [4] Semiampleness theorem for weak log Fano varieties
    Karzhemanov, I. V.
    SBORNIK MATHEMATICS, 2006, 197 (9-10) : 1459 - 1465
  • [5] On weak Fano varieties with log canonical singularities
    Gongyo, Yoshinori
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 665 : 237 - 252
  • [6] SCHUBERT VARIETIES ARE LOG FANO OVER THE INTEGERS
    Anderson, Dave
    Stapledon, Alan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (02) : 409 - 411
  • [7] Log Fano varieties over function fields of curves
    Hassett, Brendan
    Tschinkel, Yuri
    INVENTIONES MATHEMATICAE, 2008, 173 (01) : 7 - 21
  • [8] Log Fano varieties over function fields of curves
    Brendan Hassett
    Yuri Tschinkel
    Inventiones mathematicae, 2008, 173 : 7 - 21
  • [9] Globally F-regular and log Fano varieties
    Schwede, Karl
    Smith, Karen E.
    ADVANCES IN MATHEMATICS, 2010, 224 (03) : 863 - 894
  • [10] Rational connectedness of log Q-Fano varieties
    Zhang, Q
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 590 : 131 - 142