Existence and Asymptotics of Normalized Ground States for a Sobolev Critical Kirchhoff Equation

被引:0
|
作者
Quanqing Li
Jianjun Nie
Wen Zhang
机构
[1] Honghe University,Department of Mathematics
[2] North China Electric Power University,School of Mathematics and Physics
[3] Beijing,College of Science
[4] Hunan University of Technology and Business,Department of Mathematics
[5] University of Craiova,undefined
来源
关键词
Normalized ground state solutions; Sobolev critical growth; Sobolev subcritical approximation method; 35J20; 35J50; 35J15; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we investigate the existence and asymptotic properties of normalized solutions for the following Kirchhoff-type equation with Sobolev critical growth [graphic not available: see fulltext] where a,b,m,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, \ b, \ m, \ \mu >0$$\end{document} and 143<p<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{14}{3}<p<6$$\end{document}. With the aid of the Sobolev subcritical approximation method that is the first time used to consider mass constrained Kirchhoff-type problems, and Schwartz symmetrization rearrangements, we obtain the existence of normalized ground states. Moreover, the asymptotic behavior of these solutions is also studied.
引用
收藏
相关论文
共 50 条
  • [31] Normalized solutions to a class of Kirchhoff equations with Sobolev critical exponent
    Li, Gongbao
    Luo, Xiao
    Yang, Tao
    ANNALES FENNICI MATHEMATICI, 2022, 47 (02): : 895 - 925
  • [32] The existence of normalized solutions to the fractional Kirchhoff equation with potentials
    Ji, Peng
    Chen, Fangqi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (02)
  • [33] Existence and asymptotics of ground states to the nonlinear Dirac equation with Coulomb potential
    Wang, Tianfang
    Zhang, Wen
    Zhang, Jian
    ASYMPTOTIC ANALYSIS, 2022, 130 (1-2) : 187 - 212
  • [34] Orbital stability of ground states for a Sobolev critical Schrodinger equation
    Jeanjean, Louis
    Jendrej, Jacek
    Le, Thanh Trung
    Visciglia, Nicola
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 164 : 158 - 179
  • [35] NORMALIZED GROUND STATES TO SOBOLEV CRITICAL SCHRODINGER SYSTEMS WITH LINEAR AND NONLINEAR COUPLINGS
    Deng, Chonghao
    Zhang, Zhitao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025,
  • [36] Asymptotics for a Sobolev type equation with a critical nonlinearity
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    DIFFERENTIAL EQUATIONS, 2007, 43 (05) : 673 - 687
  • [37] Normalized ground states for the critical fractional NLS equation with a perturbation
    Maoding Zhen
    Binlin Zhang
    Revista Matemática Complutense, 2022, 35 : 89 - 132
  • [38] Normalized ground states for the critical fractional NLS equation with a perturbation
    Zhen, Maoding
    Zhang, Binlin
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (01): : 89 - 132
  • [39] Asymptotics for a sobolev type equation with a critical nonlinearity
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    Differential Equations, 2007, 43 : 673 - 687
  • [40] Existence of normalized solutions for a Sobolev supercritical Schrodinger equation
    Li, Quanqing
    Yang, Zhipeng
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (12): : 6761 - 6771