Existence and Asymptotics of Normalized Ground States for a Sobolev Critical Kirchhoff Equation

被引:0
|
作者
Quanqing Li
Jianjun Nie
Wen Zhang
机构
[1] Honghe University,Department of Mathematics
[2] North China Electric Power University,School of Mathematics and Physics
[3] Beijing,College of Science
[4] Hunan University of Technology and Business,Department of Mathematics
[5] University of Craiova,undefined
来源
关键词
Normalized ground state solutions; Sobolev critical growth; Sobolev subcritical approximation method; 35J20; 35J50; 35J15; 35J60; 35J70;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we investigate the existence and asymptotic properties of normalized solutions for the following Kirchhoff-type equation with Sobolev critical growth [graphic not available: see fulltext] where a,b,m,μ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, \ b, \ m, \ \mu >0$$\end{document} and 143<p<6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{14}{3}<p<6$$\end{document}. With the aid of the Sobolev subcritical approximation method that is the first time used to consider mass constrained Kirchhoff-type problems, and Schwartz symmetrization rearrangements, we obtain the existence of normalized ground states. Moreover, the asymptotic behavior of these solutions is also studied.
引用
收藏
相关论文
共 50 条