Feynman-Kac Representation for Parabolic Anderson Equations with General Gaussian Noise

被引:0
|
作者
Chen, Xia [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
ASYMPTOTICS;
D O I
10.1007/s11253-024-02290-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide the Feynman-Kac representation for the parabolic Anderson equations driven by a general Gaussian noise. As a feature of the idea, we can mention the argument of subadditivity used to establish the required exponential integrability.
引用
收藏
页码:1758 / 1777
页数:20
相关论文
共 50 条
  • [31] FEYNMAN-KAC FORMULA FOR TEMPERED FRACTIONAL GENERAL DIFFUSION EQUATIONS WITH NONAUTONOMOUS EXTERNAL POTENTIAL
    Zhang, Lijuan
    Wang, Yejuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (04): : 1670 - 1694
  • [32] Semi-Dirichlet forms, Feynman-Kac functionals and the Cauchy problem for semilinear parabolic equations
    Klimsiak, Tomasz
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (05) : 1205 - 1240
  • [33] Solving Dirichlet problems numerically using the Feynman-Kac representation
    Buchmann, FM
    Petersen, WP
    BIT NUMERICAL MATHEMATICS, 2003, 43 (03) : 519 - 540
  • [34] Feynman-Kac and Feynman Formulas for Infinite-Dimensional Equations with Vladimirov Operator
    Smolyanov, O. G.
    Shamarov, N. N.
    Kpekpassi, M.
    DOKLADY MATHEMATICS, 2011, 83 (03) : 389 - 393
  • [35] FEYNMAN-KAC REPRESENTATION FOR HAMILTON-JACOBI- BELLMAN IPDE
    Kharroubi, Idris
    Huyen Pham
    ANNALS OF PROBABILITY, 2015, 43 (04): : 1823 - 1865
  • [36] Feynman-Kac and Feynman formulas for infinite-dimensional equations with Vladimirov operator
    O. G. Smolyanov
    N. N. Shamarov
    M. Kpekpassi
    Doklady Mathematics, 2011, 83 : 389 - 393
  • [37] Forward Feynman-Kac type representation for semilinear non-conservative partial differential equations
    Le Cavil, Anthony
    Oudjane, Nadia
    Russo, Francesco
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (08) : 1206 - 1248
  • [38] NONLINEAR FEYNMAN-KAC FORMULAS FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH SPACE-TIME NOISE
    Song, Jian
    Song, Xiaoming
    Zhang, Qi
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) : 955 - 990
  • [39] Numerical Algorithms for the Forward and Backward Fractional Feynman-Kac Equations
    Deng, Weihua
    Chen, Minghua
    Barkai, Eli
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 62 (03) : 718 - 746
  • [40] Feynman-Kac Formulas for Solutions of Nonstationarily Perturbed Evolution Equations
    Orlov, Yu. N.
    Sakbaev, V. Zh.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2025, 65 (01) : 109 - 128