On piecewise-constant approximation of continuous functions of n variables in integral metrics

被引:0
作者
Bel'skii S.A. [1 ]
机构
[1] Dnepropetrovsk University, Dnepropetrovsk
关键词
Continuous Function; Integral Metrics;
D O I
10.1023/A:1020505231310
中图分类号
学科分类号
摘要
We consider the approximation by piecewise-constant functions for classes of functions of many variables defined by moduli of continuity of the form ω(δ1, . . . , δn) = ω 1(δ1) + ... + ωn(δ n), where ωi(δi) are ordinary moduli of continuity that depend on one variable. In the case where ωi(δi) are convex upward, we obtain exact error estimates in the following cases: (i) in the integral metric L2 for ω(δ1, . . . , δn) = ω1(δ1) + ... + ωn(δ n); (ii) in the integral metric Lp (p ≥ 1) for ω (δ1, . . . , δn) = c1δ 1 + ... + cnδn; (iii) in the integral metric L(2, . . . , 2, 2r) (r = 2, 3, . . .) for ω(δ 1, . . . , δn) = ω1(δ 1) + ... + ωn-1(δn-1) + c nδn. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:358 / 370
页数:12
相关论文
共 8 条
[1]  
Korneichuk N.P., Exact Constants in Approximation Theory [in Russian], (1987)
[2]  
Korneichuk N.P., On linear widths of classes H<sup>ω</sup>, Ukr. Mat. Zh., 48, 9, pp. 1255-1264, (1996)
[3]  
Chernitskaya O.V., On approximation of continuous functions by piecewise-constant functions in integral metrics, Vestn. Dnepropetr. Univ., 3, pp. 128-137, (1998)
[4]  
Tchernitskaya O.V., Approximation of continuous functions classes by step functions in integral metrics, East J. Approx., 5, 4, pp. 403-1118, (1999)
[5]  
Chernitskaya O.V., Widths of classes H<sup>ω</sup>[a, b] in Orlicz spaces, Vestn. Dnepropetr. Univ., 4, pp. 101-105, (1999)
[6]  
Korneichuk N.P., Rearrangements and piecewise-constant approximation of continuous functions of n variables, Ukr. Mat. Zh., 50, 7, pp. 907-918, (1998)
[7]  
Hardy G.H., Littlewood J.E., Polya G., Inequalities [Russian Translation], (1948)
[8]  
Besov O.V., Il'in V.P., Nikol'skii S.M., Integral Representations of Functions and Imbedding Theorems [in Russian], (1975)