A remark on strong law of large numbers for weighted U-statistics

被引:0
作者
Hyung-Tae Ha
Mei Ling Huang
De Li Li
机构
[1] Gachon University,Department of Applied Statistics
[2] Brock University,Department of Mathematics and Statistics
[3] Lakehead University,Department of Mathematical Sciences
来源
Acta Mathematica Sinica, English Series | 2014年 / 30卷
关键词
Strong law of large numbers; weighted U-statistics; complete convergence; 60F15; 60G50;
D O I
暂无
中图分类号
学科分类号
摘要
Let {X,Xn; n ≥ 1} be a sequence of i.i.d. random variables with values in a measurable space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb{S},\mathcal{S})$\end{document} such that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{E}|h(X_1 ,X_2 ,...,X_m )| < \infty $\end{document}, where h is a measurable symmetric function from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{S}^m $\end{document} into ℝ = (−∞,∞). Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{ w_{n,i_1 ,i_2 ,...i_m } ;1 \leqslant i_1 < i_2 < \cdots i_m \leqslant n,n \geqslant m\} $\end{document} be a matrix array of real numbers. Motivated by a result of Choi and Sung (1987), in this note we are concerned with establishing a strong law of large numbers for weighted U-statistics with kernel h of degree m. We show that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathop {\lim }\limits_{n \to \infty } \frac{{m!(n - m)!}} {{n!}}\sum\limits_{1 \leqslant i_1 < i_2 < \cdots i_m \leqslant n} {w_{n,i_1 ,i_2 ,...,i_m } (h(X_{i_1 } ,X_{i_2 } ,...,X_{i_m } ) - \theta ) = 0} a.s. $\end{document} whenever supn≥m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\max _{1 \leqslant i_1 < i_2 < \cdots i_m \leqslant n} |w_{n,i_1 ,i_2 , \cdots ,i_m } | < \infty $\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\theta = \mathbb{E}h(X_1 ,X_2 ,...,X_m )$\end{document}. The proof of this result is based on a new general result on complete convergence, which is a fundamental tool, for array of real-valued random variables under some mild conditions.
引用
收藏
页码:1595 / 1605
页数:10
相关论文
共 24 条
  • [1] Bai Z D(2000)Marcinkiewicz strong laws for linear statistics Stat. Probabil. Lett. 46 105-112
  • [2] Cheng P E(1966)Limiting behavior of posterior distributions where the model is incorrect Ann. Math. Stat. 37 51-58
  • [3] Berk R H(1987)Almost sure convergence theorems of weighted sums of random variables Stoch. Anal. Appl. 5 365-377
  • [4] Choi B D(1995)A strong law for weighted sums of i.i.d. random variables J. Theor. Probab. 8 625-641
  • [5] Sung S H(1983)Symmetric statistics, Poisson point processes, and multiple Wiener integrals Ann. Stat. 11 739-745
  • [6] Cuzick J(1946)The theory of unbiased estimation Ann. Math. Stat. 17 34-43
  • [7] Dynkin B E(1948)A class of statistics with asymptotically normal distribution Ann. Math. Stat. 19 293-325
  • [8] Mandelbaum A(1947)Complete convergence and the law of large numbers P. Natl. Acad. Sci. USA 33 25-31
  • [9] Halmos P R(1995)Complete convergence and almost sure convergence of weighted sums of random variables J. Theor. Probab. 8 49-76
  • [10] Hoeffding W(1995)On the strong law of large numbers and the law of logarithm for weighted sums of independent random variables with multidimensional indices J. Multivariate Anal. 52 181-198