The obstacle problem for degenerate doubly nonlinear equations of porous medium type

被引:0
作者
Leah Schätzler
机构
[1] Universität Erlangen–Nürnberg,Department Mathematik
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2021年 / 200卷
关键词
Porous medium equation; Doubly nonlinear equations; Existence; Variational solutions; Minimizing movements; 35K86; 49J40; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of nonnegative variational solutions to the obstacle problem associated with the degenerate doubly nonlinear equation ∂tb(u)-div(Df(Du))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t b(u) - {{\,\mathrm{div}\,}}(Df(Du)) = 0, \end{aligned}$$\end{document}where the nonlinearity b:R≥0→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b :\mathbb {R}_{\ge 0} \rightarrow \mathbb {R}_{\ge 0}$$\end{document} is increasing, piecewise C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} and satisfies a polynomial growth condition. The prototype is b(u):=um\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(u) := u^m$$\end{document} with m∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \in (0,1)$$\end{document}. Further, f:Rn→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :\mathbb {R}^n \rightarrow \mathbb {R}_{\ge 0}$$\end{document} is convex and fulfills a standard p-growth condition. The proof relies on a nonlinear version of the method of minimizing movements.
引用
收藏
页码:641 / 683
页数:42
相关论文
共 45 条
  • [41] Temam R(undefined)undefined undefined undefined undefined-undefined
  • [42] Marcellini P(undefined)undefined undefined undefined undefined-undefined
  • [43] Schätzler L(undefined)undefined undefined undefined undefined-undefined
  • [44] Showalter R(undefined)undefined undefined undefined undefined-undefined
  • [45] Walkington NJ(undefined)undefined undefined undefined undefined-undefined