The obstacle problem for degenerate doubly nonlinear equations of porous medium type

被引:0
作者
Leah Schätzler
机构
[1] Universität Erlangen–Nürnberg,Department Mathematik
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2021年 / 200卷
关键词
Porous medium equation; Doubly nonlinear equations; Existence; Variational solutions; Minimizing movements; 35K86; 49J40; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of nonnegative variational solutions to the obstacle problem associated with the degenerate doubly nonlinear equation ∂tb(u)-div(Df(Du))=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t b(u) - {{\,\mathrm{div}\,}}(Df(Du)) = 0, \end{aligned}$$\end{document}where the nonlinearity b:R≥0→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b :\mathbb {R}_{\ge 0} \rightarrow \mathbb {R}_{\ge 0}$$\end{document} is increasing, piecewise C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document} and satisfies a polynomial growth condition. The prototype is b(u):=um\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(u) := u^m$$\end{document} with m∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \in (0,1)$$\end{document}. Further, f:Rn→R≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :\mathbb {R}^n \rightarrow \mathbb {R}_{\ge 0}$$\end{document} is convex and fulfills a standard p-growth condition. The proof relies on a nonlinear version of the method of minimizing movements.
引用
收藏
页码:641 / 683
页数:42
相关论文
共 45 条
  • [1] Akagi G(2014)Doubly nonlinear equations as convex minimization SIAM J. Math. Anal. 46 1922-1945
  • [2] Stefanelli U(1983)Quasilinear elliptic-parabolic differential equations Math. Z. 183 311-341
  • [3] Alt H(1970)Regularity properties of flows through porous media: the interface Arch. Ration. Mech. Anal. 37 1-10
  • [4] Luckhaus S(1952)On some unsteady motions of a liquid and gas in a porous medium Akad. Nauk SSSR. Prikl. Mat. Meh. 16 67-78
  • [5] Aronson DG(1956)On self-similar solutions of the Cauchy problem for a nonlinear parabolic equation of unsteady filtration of a gas in a porous medium Prikl. Mat. Meh. 20 761-763
  • [6] Barenblatt GI(1988)Existence results for doubly nonlinear higher order parabolic equations on unbounded domains Math. Ann. 279 373-394
  • [7] Barenblatt GI(2015)A time dependent variational approach to image restoration SIAM J. Imaging Sci. 8 968-1006
  • [8] Bernis F(2014)Existence of evolutionary variational solutions via the calculus of variations J. Differ. Equ. 256 3912-3942
  • [9] Bögelein V(2013)Parabolic systems with Arch. Ration. Mech. Anal. 210 219-267
  • [10] Duzaar F(2018)-growth: a variational approach Arch. Ration. Mech. Anal. 229 503-545