A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages

被引:161
作者
Kremer, Mark [1 ]
Petrides, Ioannis [2 ]
Meyer, Eric [1 ]
Heinrich, Matthias [1 ]
Zilberberg, Oded [2 ]
Szameit, Alexander [1 ]
机构
[1] Univ Rostock, Inst Phys, Albert Einstein Str 23, D-18059 Rostock, Germany
[2] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
STATES;
D O I
10.1038/s41467-020-14692-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topological Insulators are a novel state of matter where spectral bands are characterized by quantized topological invariants. This unique quantized nonlocal property commonly manifests through exotic bulk phenomena and corresponding robust boundary effects. In our work we study a system where the spectral bands are associated with non-quantized indices, but nevertheless possess robust boundary states. We present a theoretical analysis, where we show that the square of the Hamiltonian exhibits quantized indices. The findings are experimentally demonstrated by using photonic Aharonov-Bohm cages.
引用
收藏
页数:6
相关论文
共 32 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]   Topological tight-binding models from nontrivial square roots [J].
Arkinstall, J. ;
Teimourpour, M. H. ;
Feng, L. ;
El-Ganainy, R. ;
Schomerus, H. .
PHYSICAL REVIEW B, 2017, 95 (16)
[3]  
Asboth J. K., 2016, Lect. Notes Phys., V919, P166
[4]   Quantized electric multipole insulators [J].
Benalcazar, Wladimir A. ;
Bernevig, B. Andrei ;
Hughes, Taylor L. .
SCIENCE, 2017, 357 (6346) :61-66
[5]  
COOPER F, 1995, PHYS REP, V251, P268
[6]  
Fu L, 2011, PHYS REV LETT, V106, P1
[7]  
Hafezi M, 2013, NAT PHOTONICS, V7, P1001, DOI [10.1038/NPHOTON.2013.274, 10.1038/nphoton.2013.274]
[8]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[9]   A topological Dirac insulator in a quantum spin Hall phase [J].
Hsieh, D. ;
Qian, D. ;
Wray, L. ;
Xia, Y. ;
Hor, Y. S. ;
Cava, R. J. ;
Hasan, M. Z. .
NATURE, 2008, 452 (7190) :970-U5
[10]  
Kane CL, 2014, NAT PHYS, V10, P39, DOI [10.1038/NPHYS2835, 10.1038/nphys2835]