Stability of nonlocal finite-difference problems

被引:0
作者
Gulin A.V.
Ionkin N.I.
Morozova V.A.
机构
基金
俄罗斯基础研究基金会;
关键词
Boundary Condition; Mathematical Modeling; Mathematical Physic; Computational Mathematic; Differential Operator;
D O I
10.1007/s10598-005-0022-9
中图分类号
学科分类号
摘要
The article presents a brief review of the stability theory of finite-difference schemes for time-dependent problems of mathematical physics in which the spatial differential operator is constrained by boundary conditions joined on different pieces of the boundary. It is shown for the particular case of the heat-conduction equation that nonlocal boundary conditions may generate both simple finite-difference operators and finite-difference operators with an incomplete eigenfunction system. In both cases a rule is suggested for constructing the energy norm that ensures stability of the finite-difference scheme. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:248 / 256
页数:8
相关论文
共 12 条
[1]  
Hin V.A., Necessary and sufficient conditions when the subsystem of eigen- And adjoint functions of the Keldysh bundle of ordinary differential operators is a basis, Dokl. Akad. Nauk SSSR, 227, 4, pp. 28-31, (1976)
[2]  
Ilin V.A., Absolute and uniform convergence of eigen- And adjoint function expansions of a non-self-adjoint elliptical operator, Dokl. Akad. Nauk SSSR, 274, 1, pp. 19-22, (1984)
[3]  
Ilin V.A., Moiseev E.I., Nonlocal boundary-value problem for the Sturm -Liouville operator in differential and finite-difference settings, Dokl. Akad. Nauk SSSR, 291, 3, pp. 534-539, (1986)
[4]  
Samarskaya T.A., Absolute and uniform convergence of the root-function expansion of a nonlocal boundary-value problem of the first kind, Differents. Uravn., 25, 7, pp. 1155-1160, (1989)
[5]  
Ionkin N.I., Finite-difference scheme for one nonclassical problem, Vestnik MGU, Ser. 15, Vychisl. Matem. Kibern., 2, pp. 20-32, (1977)
[6]  
Ionkin N.I., Morozova V.A., Stability of finite-difference schemes with nonlocal boundary conditions, Vestnik MGU, Ser. 15, Vychisl. Matem. Kibern., 3, pp. 19-23, (2000)
[7]  
Samarskii A.A., Regularization of finite-difference schemes, Zh. Vychisl. Matem. Mat. Fiziki, 7, 1, pp. 62-93, (1967)
[8]  
Samarskii A.A., Classes of stable finite-difference schemes, Zh. Vychisl. Matem. Mat. Fiziki, 7, 5, pp. 1096-1133, (1967)
[9]  
Ionkin N.I., Valikova E.A., On eigenvalues and eigenfunctions of one nonclassical boundary-value problems, Matem. Modelirovanie, 8, 1, pp. 53-63, (1996)
[10]  
Gulin A.V., Morozova V.A., Stability of a nonlocal finite-difference boundary-value problem, Differents. Uravn., 39, 7, pp. 912-917, (2003)