Carathéodory Theorems for Slice Regular Functions

被引:0
作者
Guangbin Ren
Xieping Wang
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
Complex Analysis and Operator Theory | 2015年 / 9卷
关键词
Quaternion; Slice regular functions; Carathéodory theorems; 30G35; 32A26;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper a sharp quaternionic version of the Carathéodory theorem is established for slice regular functions with positive real part, which strengthes a weaken version recently established by Alpay et al. using the Herglotz integral formula. Moreover, the restriction of positive real part can be relaxed so that the theorem becomes the quaternionic version of the Borel–Carathéodory theorem. It turns out that the two theorems are equivalent.
引用
收藏
页码:1229 / 1243
页数:14
相关论文
共 27 条
  • [1] Alpay D(2015)An extension of Herglotz’s theorem to the quaternions J. Math. Anal. Appl. 421 754-778
  • [2] Colombo F(1911)Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen Rend. Circ. Mat. Palermo. 32 193-217
  • [3] Kimsey DP(2009)Extension results for slice regular functions of a quaternionic variable Adv. Math. 222 1793-1808
  • [4] Sabadini I(2014)Some integral representations for slice hyperholomorphic functions Mosc. Math. J. 14 373-489
  • [5] Carathéodory C(2013)Landau–Toeplitz theorems for slice regular functions over quaternions Pac. J. Math. 265 381-404
  • [6] Colombo F(2008)Zeros of regular functions and polynomials of a quaternionic variable Mich. Math. J. 56 655-667
  • [7] Gentili G(2012)Power series and analyticity over the quaternions Math. Ann. 352 113-131
  • [8] Sabadini I(2006)A new approach to Cullen-regular functions of a quaternionic variable C. R. Math. Acad. Sci. Paris. 342 741-744
  • [9] Struppa DC(2007)A new theory of regular functions of a quaternionic variable Adv. Math. 216 279-301
  • [10] Colombo F(2009)Borel–Carathéodory type theorem for monogenic functions Complex Anal. Oper. Theory. 3 99-112