Data Complexity of Query Answering in Expressive Description Logics via Tableaux

被引:0
|
作者
Magdalena Ortiz
Diego Calvanese
Thomas Eiter
机构
[1] Vienna University of Technology,Institute of Information Systems
[2] Free University of Bozen-Bolzano,Faculty of Computer Science
来源
Journal of Automated Reasoning | 2008年 / 41卷
关键词
Data complexity; Query answering; Expressive description logics;
D O I
暂无
中图分类号
学科分类号
摘要
The logical foundations of the standard web ontology languages are provided by expressive Description Logics (DLs), such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHIQ}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOIQ}$\end{document}. In the Semantic Web and other domains, ontologies are increasingly seen also as a mechanism to access and query data repositories. This novel context poses an original combination of challenges that has not been addressed before: (i) sufficient expressive power of the DL to capture common data modelling constructs; (ii) well established and flexible query mechanisms such as those inspired by database technology; (iii) optimisation of inference techniques with respect to data size, which typically dominates the size of ontologies. This calls for investigating data complexity of query answering in expressive DLs. While the complexity of DLs has been studied extensively, few tight characterisations of data complexity were available, and the problem was still open for most DLs of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SH}$\end{document} family and for standard query languages like conjunctive queries and their extensions. We tackle this issue and prove a tight coNP upper bound for positive existential queries without transitive roles in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOQ{\text{,}}\, SHIQ}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOI}$\end{document}. We thus establish that, for a whole range of sublogics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOIQ}$\end{document} that contain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{AL}$\end{document}, answering such queries has coNP-complete data complexity. We obtain our result by a novel tableaux-based algorithm for checking query entailment, which uses a modified blocking condition in the style of Carin. The algorithm is sound for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOIQ}$\end{document}, and shown to be complete for all considered proper sublogics in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SH}$\end{document} family.
引用
收藏
页码:61 / 98
页数:37
相关论文
共 50 条
  • [31] Expressive probabilistic description logics
    Lukasiewicz, Thomas
    ARTIFICIAL INTELLIGENCE, 2008, 172 (6-7) : 852 - 883
  • [32] Data complexity in the εL family of description logics
    Krisnadhi, Adila
    Lutz, Carsten
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2007, 4790 : 333 - +
  • [33] Tractable reasoning and efficient query answering in description logics:: The DL-Lite family
    Calvanese, Diego
    De Giacomo, Giuseppe
    Lembo, Domenico
    Lenzerini, Maurizio
    Rosati, Riccardo
    JOURNAL OF AUTOMATED REASONING, 2007, 39 (03) : 385 - 429
  • [34] Tractable reasoning and efficient query answering in description logics: The DL-Lite family
    Calvanese, Diego
    De Giacomo, Giuseppe
    Lembo, Domenico
    Lenzerini, Maurizio
    Rosati, Riccardo
    Journal of Automated Reasoning, 2007, 39 (03): : 385 - 429
  • [35] Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family
    Diego Calvanese
    Giuseppe De Giacomo
    Domenico Lembo
    Maurizio Lenzerini
    Riccardo Rosati
    Journal of Automated Reasoning, 2007, 39 : 385 - 429
  • [36] Reducing query answering to satisfiability in nonmonotonic logics
    Rosati, R
    FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, 1998, : 853 - 858
  • [37] On the data complexity of consistent query answering over graph databases
    Barcelo, Pablo
    Fontaine, Gaelle
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 88 : 164 - 194
  • [38] Complexity of Threshold Query Answering in Probabilistic Ontological Data Exchange
    Lukasiewicz, Thomas
    Predoiu, Livia
    ECAI 2016: 22ND EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, 285 : 1008 - 1016
  • [39] Datalog and description logics: Expressive power
    Cadoli, M
    Palopoli, L
    Lenzerini, M
    DATABASE PROGRAMMING LANGUAGES, 1998, 1369 : 281 - 298
  • [40] Beth definability in expressive description logics
    1600, AI Access Foundation (48):