Data Complexity of Query Answering in Expressive Description Logics via Tableaux

被引:0
|
作者
Magdalena Ortiz
Diego Calvanese
Thomas Eiter
机构
[1] Vienna University of Technology,Institute of Information Systems
[2] Free University of Bozen-Bolzano,Faculty of Computer Science
来源
Journal of Automated Reasoning | 2008年 / 41卷
关键词
Data complexity; Query answering; Expressive description logics;
D O I
暂无
中图分类号
学科分类号
摘要
The logical foundations of the standard web ontology languages are provided by expressive Description Logics (DLs), such as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHIQ}$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOIQ}$\end{document}. In the Semantic Web and other domains, ontologies are increasingly seen also as a mechanism to access and query data repositories. This novel context poses an original combination of challenges that has not been addressed before: (i) sufficient expressive power of the DL to capture common data modelling constructs; (ii) well established and flexible query mechanisms such as those inspired by database technology; (iii) optimisation of inference techniques with respect to data size, which typically dominates the size of ontologies. This calls for investigating data complexity of query answering in expressive DLs. While the complexity of DLs has been studied extensively, few tight characterisations of data complexity were available, and the problem was still open for most DLs of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SH}$\end{document} family and for standard query languages like conjunctive queries and their extensions. We tackle this issue and prove a tight coNP upper bound for positive existential queries without transitive roles in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOQ{\text{,}}\, SHIQ}$\end{document}, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOI}$\end{document}. We thus establish that, for a whole range of sublogics of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOIQ}$\end{document} that contain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{AL}$\end{document}, answering such queries has coNP-complete data complexity. We obtain our result by a novel tableaux-based algorithm for checking query entailment, which uses a modified blocking condition in the style of Carin. The algorithm is sound for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SHOIQ}$\end{document}, and shown to be complete for all considered proper sublogics in the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{SH}$\end{document} family.
引用
收藏
页码:61 / 98
页数:37
相关论文
共 50 条
  • [21] On the Data Complexity of Consistent Query Answering
    ten Cate, Balder
    Fontaine, Gaelle
    Kolaitis, Phokion G.
    THEORY OF COMPUTING SYSTEMS, 2015, 57 (04) : 843 - 891
  • [22] On the Data Complexity of Consistent Query Answering
    Balder ten Cate
    Gaëlle Fontaine
    Phokion G. Kolaitis
    Theory of Computing Systems, 2015, 57 : 843 - 891
  • [23] A Tableaux-Based Method for Computing Least Common Subsumers for Expressive Description Logics
    Donini, Francesco M.
    Colucci, Simona
    Di Noia, Tommaso
    Di Sciascio, Eugenio
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 739 - 745
  • [24] The complexity of reasoning with cardinality restrictions and nominals in expressive description logics
    Tobies, S
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 : 199 - 217
  • [25] Satisfiability and Query Answering in Description Logics with Global and Local Cardinality Constraints
    Baader, Franz
    Bednarczyk, Bartosz
    Rudolph, Sebastian
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 616 - 623
  • [26] Conjunctive Query Answering in Finitely-Valued Fuzzy Description Logics
    Mailis, Theofilos
    Penaloza, Rafael
    Turhan, Anni-Yasmin
    WEB REASONING AND RULE SYSTEMS, RR 2014, 2014, 8741 : 124 - 139
  • [27] A Comprehensive Framework for Controlled Query Evaluation, Consistent Query Answering and KB Updates in Description Logics
    Lembo, Domenico
    Rosati, Riccardo
    Savo, Domenico Fabio
    SIXTEENTH INTERNATIONAL CONFERENCE ON PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2018, : 653 - 654
  • [28] A Rational Entailment for Expressive Description Logics via Description Logic Programs
    Casini, Giovanni
    Straccia, Umberto
    ARTIFICIAL INTELLIGENCE RESEARCH, SACAIR 2021, 2022, 1551 : 177 - 191
  • [29] From tableaux to automata for Description Logics
    Baader, F
    Hladik, J
    Lutz, C
    Wolter, F
    LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, 2003, 2850 : 1 - 32
  • [30] From tableaux to automata for description logics
    Baader, F
    Hladik, J
    Lutz, C
    Wolter, F
    FUNDAMENTA INFORMATICAE, 2003, 57 (2-4) : 247 - 279