Water desalination using nanoporous single-layer graphene

被引:32
作者
Surwade, Sumedh P. [1 ]
Smirnov, Sergei N. [2 ]
Vlassiouk, Ivan V. [3 ]
Unocic, Raymond R. [4 ]
Veith, Gabriel M. [5 ]
Dai, Sheng [1 ,6 ]
Mahurin, Shannon M. [1 ]
机构
[1] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
[2] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA
[3] Oak Ridge Natl Lab, Energy & Transportat Sci, Oak Ridge, TN 37831 USA
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[6] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; CARBON NANOTUBES; POROUS GRAPHENE; OXIDE MEMBRANES; TRANSPORT; SEPARATION; ULTRATHIN; HYDROGEN; TECHNOLOGY; PERMEATION;
D O I
10.1038/NNANO.2015.37
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By creating nanoscale pores in a layer of graphene, it could be used as an effective separation membrane due to its chemical and mechanical stability, its flexibility and, most importantly, its one-atom thickness. Theoretical studies have indicated that the performance of such membranes should be superior to state-of-the-art polymer-based filtration membranes, and experimental studies have recently begun to explore their potential. Here, we show that single-layer porous graphene can be used as a desalination membrane. Nanometre-sized pores are created in a graphene monolayer using an oxygen plasma etching process, which allows the size of the pores to be tuned. The resulting membranes exhibit a salt rejection rate of nearly 100% and rapid water transport. In particular, water fluxes of up to 10(6) g m(-2) s(-1) at 40 degrees C were measured using pressure difference as a driving force, while water fluxes measured using osmotic pressure as a driving force did not exceed 70 g m(-2) s(-1) atm(-1).
引用
收藏
页码:459 / 464
页数:6
相关论文
共 40 条
  • [1] Impermeable atomic membranes from graphene sheets
    Bunch, J. Scott
    Verbridge, Scott S.
    Alden, Jonathan S.
    van der Zande, Arend M.
    Parpia, Jeevak M.
    Craighead, Harold G.
    McEuen, Paul L.
    [J]. NANO LETTERS, 2008, 8 (08) : 2458 - 2462
  • [2] Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (07)
  • [3] Quantifying the potential of ultra-permeable membranes for water desalination
    Cohen-Tanugi, David
    McGovern, Ronan K.
    Dave, Shreya H.
    Lienhard, John H.
    Grossman, Jeffrey C.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) : 1134 - 1141
  • [4] Water Desalination across Nanoporous Graphene
    Cohen-Tanugi, David
    Grossman, Jeffrey C.
    [J]. NANO LETTERS, 2012, 12 (07) : 3602 - 3608
  • [5] Defective Graphene as a High-Capacity Anode Material for Na- and Ca-Ion Batteries
    Datta, Dibakar
    Li, Junwen
    Shenoy, Vivek B.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) : 1788 - 1795
  • [6] Extreme Mono layer-Selectivity of Hydrogen-Plasma Reactions with Graphene
    Diankov, Georgi
    Neumann, Michael
    Goldhaber-Gordon, David
    [J]. ACS NANO, 2013, 7 (02) : 1324 - 1332
  • [7] Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy
    Dresselhaus, Mildred S.
    Jorio, Ado
    Hofmann, Mario
    Dresselhaus, Gene
    Saito, Riichiro
    [J]. NANO LETTERS, 2010, 10 (03) : 751 - 758
  • [8] Separation of Hydrogen and Nitrogen Gases with Porous Graphene Membrane
    Du, Huailiang
    Li, Jingyuan
    Zhang, Jing
    Su, Gang
    Li, Xiaoyi
    Zhao, Yuliang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (47) : 23261 - 23266
  • [9] The Future of Seawater Desalination: Energy, Technology, and the Environment
    Elimelech, Menachem
    Phillip, William A.
    [J]. SCIENCE, 2011, 333 (6043) : 712 - 717
  • [10] Graphene as a subnanometre trans-electrode membrane
    Garaj, S.
    Hubbard, W.
    Reina, A.
    Kong, J.
    Branton, D.
    Golovchenko, J. A.
    [J]. NATURE, 2010, 467 (7312) : 190 - U73