Mean ergodicity on Banach lattices and Banach spaces
被引:0
|
作者:
Eduard Yu. Emel’yanov
论文数: 0引用数: 0
h-index: 0
机构:Sobolev Institute of Mathematics at Novosibirsk,
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
论文数: 0引用数: 0
h-index: 0
机构:Sobolev Institute of Mathematics at Novosibirsk,
Manfred P.H. Wolff
机构:
[1] Sobolev Institute of Mathematics at Novosibirsk,
[2] Universitetskii pr. 4,undefined
[3] RU-630090,undefined
[4] Novosibirsk,undefined
[5] Russia,undefined
[6] Mathematisches Institut der Universität Tübingen,undefined
[7] Auf der Morgenstelle 2,undefined
[8] D-720776 Tübingen,undefined
[9] Germany,undefined
来源:
Archiv der Mathematik
|
1999年
/
72卷
关键词:
Banach Space;
Special Classis;
Positive Operator;
Banach Lattice;
Fredholm Operator;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We characterize properties of Banach spaces by mean ergodicity of operators belonging to special classes. More precisely, we prove: ¶ (i) The Banach lattice E has order continuous norm iff every power-order-bounded regular Fredholm operator is ergodic. (ii) The countably order complete Banach lattice is a KB-space iff every positive operator which possesses a quasi order bounded attractor is mean ergodic. (iii) The Banach space does not contain c0 if every Fredholm operator is ergodic.
机构:
Univ Cantabria, Fac Ciencias, Dept Matemat, E-39071 Santander, SpainUniv Cantabria, Fac Ciencias, Dept Matemat, E-39071 Santander, Spain
Gonzalez, Manuel
Pello, Javier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Rey Juan Carlos, Escuela Super Ciencias Expt & Tecnol, E-28933 Mostoles, SpainUniv Cantabria, Fac Ciencias, Dept Matemat, E-39071 Santander, Spain