Mean ergodicity on Banach lattices and Banach spaces

被引:0
|
作者
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
机构
[1] Sobolev Institute of Mathematics at Novosibirsk,
[2] Universitetskii pr. 4,undefined
[3] RU-630090,undefined
[4] Novosibirsk,undefined
[5] Russia,undefined
[6] Mathematisches Institut der Universität Tübingen,undefined
[7] Auf der Morgenstelle 2,undefined
[8] D-720776 Tübingen,undefined
[9] Germany,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Banach Space; Special Classis; Positive Operator; Banach Lattice; Fredholm Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properties of Banach spaces by mean ergodicity of operators belonging to special classes. More precisely, we prove: ¶ (i) The Banach lattice E has order continuous norm iff every power-order-bounded regular Fredholm operator is ergodic. (ii) The countably order complete Banach lattice is a KB-space iff every positive operator which possesses a quasi order bounded attractor is mean ergodic. (iii) The Banach space does not contain c0 if every Fredholm operator is ergodic.
引用
收藏
页码:214 / 218
页数:4
相关论文
共 50 条
  • [31] A Minimax Theorem in Banach Lattices
    Emma D'Aniello
    Positivity, 2000, 4 : 143 - 160
  • [32] Domination problem in Banach lattices
    A. G. Kusraev
    Mathematical Notes, 2016, 100 : 66 - 79
  • [33] On finite elements in vector lattices and Banach lattices
    Chen, ZL
    Weber, MR
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (5-6) : 495 - 501
  • [34] A Banach–Zarecki Theorem for functions with values in Banach spaces
    Sokol Bush Kaliaj
    Monatshefte für Mathematik, 2014, 175 : 555 - 564
  • [35] Are Banach spaces monadic?
    Rosicky, J.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 268 - 274
  • [36] Subprojective Banach spaces
    Oikhberg, T.
    Spinu, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 613 - 635
  • [37] Bimeasures in Banach spaces
    Nicolae Dinculeanu
    Muthu Muthiah
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 339 - 392
  • [38] On automorphic Banach spaces
    Yolanda Moreno
    Anatolij Plichko
    Israel Journal of Mathematics, 2009, 169
  • [39] Superprojective Banach spaces
    Gonzalez, Manuel
    Pello, Javier
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (02) : 1140 - 1151
  • [40] Banach Lattices on Which Every Power-Bounded Operator is Mean Ergodic
    E. Yu. Emel'yanov
    Positivity, 1997, 1 : 291 - 296