Mean ergodicity on Banach lattices and Banach spaces

被引:0
|
作者
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
机构
[1] Sobolev Institute of Mathematics at Novosibirsk,
[2] Universitetskii pr. 4,undefined
[3] RU-630090,undefined
[4] Novosibirsk,undefined
[5] Russia,undefined
[6] Mathematisches Institut der Universität Tübingen,undefined
[7] Auf der Morgenstelle 2,undefined
[8] D-720776 Tübingen,undefined
[9] Germany,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Banach Space; Special Classis; Positive Operator; Banach Lattice; Fredholm Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properties of Banach spaces by mean ergodicity of operators belonging to special classes. More precisely, we prove: ¶ (i) The Banach lattice E has order continuous norm iff every power-order-bounded regular Fredholm operator is ergodic. (ii) The countably order complete Banach lattice is a KB-space iff every positive operator which possesses a quasi order bounded attractor is mean ergodic. (iii) The Banach space does not contain c0 if every Fredholm operator is ergodic.
引用
收藏
页码:214 / 218
页数:4
相关论文
共 50 条
  • [21] S-decomposable Banach lattices, optimal sequence spaces and interpolation
    Astashkin, Sergey V.
    Nilsson, Per G.
    REVISTA MATEMATICA COMPLUTENSE, 2025,
  • [22] A minimax theorem in Banach lattices
    D'Aniello, E
    POSITIVITY, 2000, 4 (02) : 143 - 160
  • [23] Bibasic sequences in Banach lattices
    Taylor, M. A.
    Troitsky, V. G.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (10)
  • [24] Martingales in Banach lattices, II
    Gessesse, Hailegebriel E.
    Troitsky, Vladimir G.
    POSITIVITY, 2011, 15 (01) : 49 - 55
  • [25] Measurable bundles of Banach lattices
    A. G. Kusraev
    Positivity, 2010, 14 : 785 - 799
  • [26] Classification of injective banach lattices
    A. G. Kusraev
    Doklady Mathematics, 2013, 88 : 630 - 633
  • [27] Komls properties in Banach lattices
    Emelyanov, E. Y.
    Erkursun-Ozcan, N.
    Gorokhova, S. G.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 324 - 331
  • [28] Martingales in Banach lattices, II
    Hailegebriel E. Gessesse
    Vladimir G. Troitsky
    Positivity, 2011, 15 : 49 - 55
  • [29] Measurable bundles of Banach lattices
    Kusraev, A. G.
    POSITIVITY, 2010, 14 (04) : 785 - 799
  • [30] Domination problem in Banach lattices
    Kusraev, A. G.
    MATHEMATICAL NOTES, 2016, 100 (1-2) : 66 - 79