Mean ergodicity on Banach lattices and Banach spaces

被引:0
|
作者
Eduard Yu. Emel’yanov
Manfred P.H. Wolff
机构
[1] Sobolev Institute of Mathematics at Novosibirsk,
[2] Universitetskii pr. 4,undefined
[3] RU-630090,undefined
[4] Novosibirsk,undefined
[5] Russia,undefined
[6] Mathematisches Institut der Universität Tübingen,undefined
[7] Auf der Morgenstelle 2,undefined
[8] D-720776 Tübingen,undefined
[9] Germany,undefined
来源
Archiv der Mathematik | 1999年 / 72卷
关键词
Banach Space; Special Classis; Positive Operator; Banach Lattice; Fredholm Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize properties of Banach spaces by mean ergodicity of operators belonging to special classes. More precisely, we prove: ¶ (i) The Banach lattice E has order continuous norm iff every power-order-bounded regular Fredholm operator is ergodic. (ii) The countably order complete Banach lattice is a KB-space iff every positive operator which possesses a quasi order bounded attractor is mean ergodic. (iii) The Banach space does not contain c0 if every Fredholm operator is ergodic.
引用
收藏
页码:214 / 218
页数:4
相关论文
共 50 条
  • [1] Some approximation properties of Banach spaces and Banach lattices
    Tadeusz Figiel
    William B. Johnson
    Aleksander Pełczyński
    Israel Journal of Mathematics, 2011, 183
  • [2] Convergence theorems and Tauberian theorems for functions and sequences in Banach spaces and Banach lattices
    Yuan-Chuan Li
    Ryotaro Sato
    Sen-Yen Shaw
    Israel Journal of Mathematics, 2007, 162 : 109 - 149
  • [3] Embeddings of Banach Spaces Into Banach Lattices and the Gordon–Lewis Property
    P.G. Casazza
    N.J. Nielsen
    Positivity, 2001, 5 : 297 - 321
  • [4] Embeddings of Banach spaces into Banach lattices and the Gordon-Lewis property
    Casazza, PG
    Nielsen, NJ
    POSITIVITY, 2001, 5 (04) : 297 - 321
  • [5] Some characterizations of KB-operators on Banach lattices and ordered Banach spaces
    Altin, Birol
    Machrafi, Nabil
    TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1736 - 1743
  • [6] Compact spaces associated to separable Banach lattices
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rueda Zoca, Abraham
    Tradacete, Pedro
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (04)
  • [7] Compact spaces associated to separable Banach lattices
    Antonio Avilés
    Gonzalo Martínez-Cervantes
    Abraham Rueda Zoca
    Pedro Tradacete
    Banach Journal of Mathematical Analysis, 2022, 16
  • [8] Isomorphic and isometric copies of l(infinity)(Gamma) in duals of Banach spaces and Banach lattices
    Wojtowicz, Marek
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (03): : 467 - 471
  • [9] Banach Spaces Which Are Far from all Lattices
    Yehoram Gordon
    Positivity, 2003, 7 : 99 - 102
  • [10] Weak precompactness in Banach lattices
    Bo Xiang
    Jinxi Chen
    Lei Li
    Positivity, 2022, 26