Aro: a machine learning approach to identifying single molecules and estimating classification error in fluorescence microscopy images

被引:0
作者
Allison Chia-Yi Wu
Scott A Rifkin
机构
[1] University of California,Graduate Program in Bioinformatics and Systems Biology
[2] University of California,Section of Ecology, Behavior, and Evolution, Division of Biology
来源
BMC Bioinformatics | / 16卷
关键词
Single molecule imaging; smFISH; Random forest; Image informatics; RNA; Fluorescence microscopy; Machine learning; Image quality;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 130 条
  • [1] Sako Y(2000)Single-molecule imaging of EGFR signalling on the surface of living cells Nat Cell Biol 2 168-72
  • [2] Minoghchi S(2010)Superresolution imaging of chemical synapses in the brain Neuron 68 843-56
  • [3] Yanagida T(2010)Variability in gene expression underlies incomplete penetrance Nature 463 913-8
  • [4] Dani A(2008)Imaging individual mRNA molecules using multiple singly labeled probes Nat Methods 5 877-9
  • [5] Huang B(2013)Systematic identification of signal-activated stochastic gene regulation Science 339 584-7
  • [6] Bergan J(2012)Single-cell analysis reveals that Noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment Mol Cell 45 470-82
  • [7] Dulac C(2009)Imaging transcription in living cells Annu Rev Biophys 38 173-96
  • [8] Zhuang X(1998)Visualization of single RNA transcripts in situ Science 280 585-90
  • [9] Raj A(2013)Feedback control of gene expression variability in the Cell 155 869-80
  • [10] Rifkin SA(2013) Wnt pathway Dev Cell 24 64-75