Quasi-random multilinear polynomials

被引:0
|
作者
Gil Kalai
Leonard J. Schulman
机构
[1] The Hebrew University of Jerusalem,Institute of Mathematics
[2] California Institute of Technology,Division of Engineering and Applied Science
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider multilinear Littlewood polynomials, polynomials in n variables in which a specified set of monomials U have ±1 coefficients, and all other coefficients are 0. We provide upper and lower bounds (which are close for U of degree below log n) on the minimum, over polynomials h consistent with U, of the maximum of |h| over ±1 assignments to the variables. (This is a variant of a question posed by Erdős regarding the maximum on the unit disk of univariate polynomials of given degree with unit coefficients.) We outline connections to the theory of quasi-random graphs and hypergraphs, and to statistical mechanics models. Our methods rely on the analysis of the Gale–Berlekamp game; on the constructive side of the generic chaining method; on a Khintchine-type inequality for polynomials of degree greater than 1; and on Bernstein’s approximation theory inequality.
引用
收藏
页码:195 / 211
页数:16
相关论文
共 50 条
  • [31] Large hole in quasi-random graphs
    Polcyn, Joanna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2008, 15 (01):
  • [32] Quasi-random graphs and graph limits
    Janson, Svante
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (07) : 1054 - 1083
  • [33] Cooperative phenomena in a quasi-random antiferromagnet
    Todate, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2004, 73 (01) : 198 - 205
  • [34] QUASI-RANDOM ASSIGNMENT CAN BE AS CONVINCING AS RANDOM ASSIGNMENT
    BAER, DM
    AMERICAN JOURNAL ON MENTAL RETARDATION, 1993, 97 (04): : 373 - 375
  • [35] PSEUDORANDOM NUMBERS AND QUASI-RANDOM POINTS
    NIEDERREITER, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T648 - T652
  • [36] On randomization of Halton quasi-random sequences
    Ermakov S.M.
    Vestnik St. Petersburg University, Mathematics, 2017, 50 (4) : 337 - 341
  • [37] Quasi-random nonlinear scale space
    Mishra, Akshaya
    Wong, Alexander
    Clausi, David A.
    Fieguth, Paul W.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1850 - 1859
  • [38] QUASI-RANDOM SEQUENCES BY POWER RESIDUES
    CENACCHI, G
    DEMATTEI.A
    NUMERISCHE MATHEMATIK, 1972, 20 (01) : 54 - &
  • [39] Remarks on randomization of quasi-random numbers
    Ermakov, Sergej M.
    Leora, Svetlana N.
    MONTE CARLO METHODS AND APPLICATIONS, 2018, 24 (02): : 139 - 145
  • [40] Quasi-random sampling importance resampling
    Pérez, CJ
    Martín, J
    Rufo, MJ
    Rojano, C
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2005, 34 (01) : 97 - 112