Transition edge sensor-based detector: from X-ray to γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-ray

被引:0
作者
Shuo Zhang
Jing-Kai Xia
Tao Sun
Wen-Tao Wu
Bing-Jun Wu
Yong-Liang Wang
Robin Cantor
Ke Han
Xiao-Peng Zhou
Hao-Ran Liu
Fu-You Fan
Si-Ming Guo
Jun-Cheng Liang
De-Hong Li
Yan-Ru Song
Xu-Dong Ju
Qiang Fu
Zhi Liu
机构
[1] ShanghaiTech University,Center for Transformative Science
[2] Chinese Academy of Sciences,Shanghai Institute of Microsystem and Information Technology
[3] STAR Cryoelectronics,Shanghai Laboratory for Particle Physics and Cosmology, INPAC and Department of Physics and Astronomy
[4] Shanghai Jiao Tong University,School of Physics
[5] Beihang University,Division of Ionizing Radiation
[6] National Institute of Metrology,undefined
[7] NIM,undefined
关键词
Synchrotron radiation instrumentation; X-ray spectrometers; Cryogenic detectors; Transition edge sensor;
D O I
10.1007/s41365-022-01071-5
中图分类号
学科分类号
摘要
A transition edge sensor (TES) is extremely sensitive to changes in temperature, and combined with a high-Z metal of a certain thickness, it can realize high-energy resolution measurements of particles such as X-rays. X-rays with energies below 10 keV have a weak penetrating ability, hence, only gold or bismuth of a few micrometers in thickness can guarantee a quantum efficiency higher than 70%. Therefore, the entire structure of the TES X-ray detector in this energy range can be realized using a microfabrication process. However, for X-rays or γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-rays from 10 keV to 200 keV, submillimeter absorber layers are required, which cannot be realized using the microfabrication process. This paper first briefly introduces a set of TES X-ray detectors and their auxiliary systems, and then focuses on the introduction of the TES γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document}-ray detector with an absorber based on a submillimeter lead-tin alloy sphere. The detector achieved a quantum efficiency above 70% near 100 keV and an energy resolution of approximately 161.5 eV at 59.5 keV.
引用
收藏
相关论文
共 95 条
  • [1] Zhang S(2021)Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite Acta Phys. Sin. 70 3793-1104
  • [2] Cui W(2015)Review of superconducting transition-edge sensors for X-ray and Supercond. Sci. Technol. 28 28-328
  • [3] Liu Z(2021)-ray spectroscopy Appl. Sci. 11 053108-1071
  • [4] Ullom JN(2017)A review of X-ray microcalorimeters based on superconducting transition edge sensors for astrophysics and particle physics Nucl. Sci. Tech. 28 121691N-444
  • [5] Bennett DA(2017)Generation of double pulses at the Shanghai Soft X-ray Free Electron Laser facility Rev. Sci. Instrum. 88 418-12086
  • [6] Gottardi L(2022)A practical superconducting-microcalorimeter X-ray spectrometer for beamline and laboratory science Proc. SPIE 12169 1099-732
  • [7] Nagayashi K(2021)TES-based X-ray spectrometer developed for SHINE project Metrologia 58 1018-210
  • [8] Wang Z(2020)Absolute energies and emission line shapes of the L X-ray transitions of lanthanide metals J. Low Temp. Phys. 200 326-210
  • [9] Feng C(2013)Coevolution of the technology on transition edge sensor spectrometer and its application to fundamental science Phys. Rev. Lett. 110 1062-306
  • [10] Zhao ZT(2015)Table-top ultrafast X-ray microcalorimeter spectrometry for molecular structure J. Phys. B: At. Mol. Opt. Phys. 49 99052F-1-968