Bi-Integrable Couplings Associated with so(3,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3,{\mathbb R})$$\end{document}

被引:0
|
作者
Morgan McAnally
Wen-Xiu Ma
机构
[1] University of South Florida,Department of Mathematics
[2] Zhejiang Normal University,College of Mathematics and Systems Science
[3] Shandong University of Science and Technology,Department of Mathematical Sciences, International Institute for Symmetry Analysis and Mathematical Modelling
[4] North-West University,College of Mathematics and Physics
[5] Mafikeng Campus,undefined
[6] Shanghai University of Electric Power,undefined
关键词
Integrable coupling; Matrix loop algebra; Hamiltonian structure; 37K05; 37K10; 35Q53;
D O I
10.1007/s40840-017-0580-y
中图分类号
学科分类号
摘要
By a class of zero curvature equations over a non-semisimple matrix loop algebra, we generate a new hierarchy of bi-integrable couplings for a soliton hierarchy associated with so(3, R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document}). The bi-Hamiltonian structures are found by the associated variational identity, which imply that all the presented coupling systems possess infinitely many commuting symmetries and conserved functionals and, thus, are Liouville integrable.
引用
收藏
页码:1921 / 1935
页数:14
相关论文
共 6 条