Complete p-elliptic integrals and a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document} for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}

被引:0
作者
Shingo Takeuchi
机构
[1] Shibaura Institute of Technology,Department of Mathematical Sciences
关键词
Generalized trigonometric functions; Complete elliptic integrals; Arithmetic–geometric mean; Brent–Salamin’s algorithm; -Laplacian; 33E05; 33C75; 11Z05;
D O I
10.1007/s11139-018-9993-y
中图分类号
学科分类号
摘要
The complete p-elliptic integrals are generalizations of the complete elliptic integrals by the generalized trigonometric function sinpθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sin _p{\theta }$$\end{document} and its half-period πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document}. It is shown, only for p=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=4$$\end{document}, that the generalized p-elliptic integrals yield a computation formula of πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document} in terms of the arithmetic–geometric mean. This is a πp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _p$$\end{document}-version of the celebrated formula of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document}, independently proved by Brent and Salamin in 1976.
引用
收藏
页码:309 / 321
页数:12
相关论文
共 11 条
[1]  
Borwein J(1993)Hypergeometric analogues of the arithmetic-geometric mean iteration Constr. Approx. 9 509-523
[2]  
Borwein P(1976)Fast multiple-precision evaluation of elementary functions J. Assoc. Comput. Mach. 23 242-251
[3]  
Garvan F(1989)A homotopic deformation along J. Differ. Equ. 80 1-13
[4]  
Brent RP(1995) of a Leray-Schauder degree result and existence for Ricerche Mat. 44 269-290
[5]  
del Pino M(1995)Some remarkable sine and cosine functions Differ. Integral Equ. 8 1813-1822
[6]  
Elgueta M(1976)Uniqueness of positive solutions of quasilinear differential equations Math. Comput. 30 565-570
[7]  
Manásevich R(2016)Computation of Kodai Math. J. 39 202-226
[8]  
Lindqvist P(undefined) using arithmetic-geometric mean undefined undefined undefined-undefined
[9]  
Naito Y(undefined)A new form of the generalized complete elliptic integrals undefined undefined undefined-undefined
[10]  
Salamin E(undefined)undefined undefined undefined undefined-undefined