Magnetic phase transformations and magnetotransport phenomena in La0.7Sr0.3Mn1 – xCoxO3 perovskite compounds

被引:0
作者
I. O. Troyanchuk
M. V. Bushinsky
D. V. Karpinsky
V. V. Sikolenko
A. N. Chobot
N. V. Tereshko
O. S. Mantytskaya
S. Schorr
机构
[1] National Academy of Sciences of Belarus,Scientific and Practical Materials Research Center
[2] Joint Institute for Nuclear Research,undefined
[3] Helmholtz-Zentrum Berlin,undefined
[4] Freie University Berlin,undefined
来源
Journal of Experimental and Theoretical Physics | 2017年 / 125卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The compositions La0.7Sr0.3Mn1 – xCoxO3 (0.13 ≤ x ≤ 1) are studied by neutron diffraction, magnetometry, and measuring the magnetotransport properties. The substitution of cobalt ions for manganese ions is shown to decrease the magnetization and the Curie temperature from 270 K (x = 0.13) to 140 K (x = 0.33). As the cobalt ion content increases to x = 0.5, the Curie temperature increases to 190 K, the magnetization decreases, and the electrical resistivity increases. At x > 0.5, the temperature of transition into a paramagnetic state decreases to 68 K (x = 0.8) and then again increases to 225 K for the La0.7Sr0.3CoO3 composition. The magnetoresistive effect in the range 0.3 ≤ x ≤ 0.4 reaches 97% and decreases gradually with increasing temperature without anomalies near the Curie point. At x ≤ 0.2, the magnetoresistive effect increases near the Curie temperature. The composition at x = 0.6 is stoichiometric, and no coherent magnetic contribution to neutron scattering is detected. The magnetic properties near x ∼ 0.5 are assumed to be caused by partial ordering of Co3+ and Mn4+ ions, and the Co3+ ions can be in both low- and high-spin states. The magnetic interaction between Co3+ ions in a high-spin state and Mn4+ is predominantly ferromagnetic, and the ferromagnetic part of the exchange interactions is close to the ferromagnetic part. These data are used to plot a magnetic La0.7Sr0.3Mn1 – xCoxO3 phase diagram.
引用
收藏
页码:290 / 297
页数:7
相关论文
共 50 条
  • [41] Magnetic structure of La0.7Sr0.3MnO3/La0.7Sr0.3FeO3 superlattices
    Arenholz, E.
    van der Laan, G.
    Yang, F.
    Kemik, N.
    Biegalski, M. D.
    Christen, H. M.
    Takamura, Y.
    APPLIED PHYSICS LETTERS, 2009, 94 (07)
  • [42] Synthesis, characterization, and electrocatalytic properties of La0.9Sr0.1Cr1−xCoxO3 perovskite oxides
    Sofiane Makhloufi
    Elies Omari
    Mahmoud Omari
    Journal of the Australian Ceramic Society, 2019, 55 : 1 - 10
  • [43] Structure, magnetic and electrical behaviour of La0.7Sr0.3Mn1-xTixO3 with 0 ≤ x ≤ 0.3
    Kallel, N
    Dezanneau, G
    Dhahri, J
    Oumezzine, M
    Vincent, H
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 261 (1-2) : 56 - 65
  • [44] Magnetic entropy change in perovskite manganites La0.7A0.3MnO3 La0.7A0.3Mn0.9Cr0.1O3 (A = Sr, Ba, Pb) and Banerjee criteria on phase transition
    Wang, Zhiming
    Jiang, Junjie
    SOLID STATE SCIENCES, 2013, 18 : 36 - 41
  • [45] Magnetic and magnetotransport properties in the Ni-doped La0.7Sr0.3MnO3 system
    Feng, JW
    Ye, C
    Hwang, LP
    PHYSICAL REVIEW B, 2000, 61 (18) : 12271 - 12276
  • [46] Structural and magnetic properties of La0.7Sr0.3Mn1-xNixO3 (x ≤ 0.4)
    Creel, Thomas F.
    Yang, Jinbo
    Kahveci, Mehmet
    Malik, Satish K.
    Quezado, S.
    Pringle, O. A.
    Yelon, William B.
    James, William J.
    JOURNAL OF APPLIED PHYSICS, 2013, 114 (01)
  • [47] Structural and Magnetic Properties of La0.7Sr0.3Mn1-xCrxO3 (x ≤ 0.5)
    Creel, Thomas F.
    Yang, Jinbo B.
    Kahveci, Mehmet
    Lamsal, Jagat
    Malik, S. K.
    Quezado, Sylvio
    Pringle, Oran A.
    Yelon, William B.
    James, William J.
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) : 1832 - 1835
  • [48] Low field magnetotransport in La0.7Sr0.3MnO3 films
    Teo, BS
    Mathur, ND
    Isaac, SP
    Evetts, JE
    Blamire, MG
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) : 7157 - 7159
  • [50] Crystallographic, electrical, and magnetic properties of the system La0.7Sr0.3Mn1-xFexO3
    Yanchevskii, OZ
    V'yunov, OI
    Belous, AG
    Tovstolytkin, AI
    LOW TEMPERATURE PHYSICS, 2006, 32 (02) : 134 - 138