Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage

被引:0
|
作者
S. Harikrishnan
S. Imran Hussain
A. Devaraju
P. Sivasamy
S. Kalaiselvam
机构
[1] Adhi College of Engineering and Technology,Dr.APJ Abdul Kalam Centre for Advanced Research, Department of Mechanical Engineering
[2] Anna University,Department of Applied Science and Technology
关键词
Melting; NEPCM; Thermal conductivity; Solidification; Nanoparticles;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the thermal performance of a newly prepared Nano-enhanced phase change material (NEPCM), constituting SiO2 Nanoparticles (NPs) in myristic acid. SiO2 NPs with mass fractions of 0.2 wt%, 0.5 wt%, 0.8 wt% and 1.0 wt% were suspended in myristic acid, which serves as the base Phase change material (PCM) separately, to determine the maximum enhancement of thermal conductivity. The size and morphology of the as synthesized SiO2 NPs were studied by Field emission scanning electron microscopy (FESEM). The phase change properties of NEPCMs were assessed with the help of Differential scanning calorimetry (DSC). The thermal conductivity enhancement of NEPCMs was measured using a Laser flash analyzer (LFA). Results clearly indicate that the duration of the melting and solidification processes of NEPCMs decreased compared to that of the base PCM. Thus, the newly prepared NEPCM is a potential candidate for harvesting solar energy for low-temperature heating systems.
引用
收藏
页码:4903 / 4910
页数:7
相关论文
共 50 条
  • [21] Melting of hybrid nano-enhanced phase change material in an inclined finned rectangular cavity for cold energy storage
    Laouer, Abdelghani
    Teggar, Mohamed
    Tuncbilek, Ekrem
    Hachani, Lakhdar
    Arici, Muslum
    Ismail, Kamal A. R.
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [22] Experimental study on characteristics of a nano-enhanced phase change material slurry for low temperature solar energy collection
    Chen, Hongbing
    Li, Siqi
    Wei, Ping
    Gong, Yutong
    Nie, Pingjun
    Chen, Xiangjie
    Wang, Congcong
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 212
  • [23] Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material
    Singh, Rupinder Pal
    Xu, Haoxin
    Kaushik, S. C.
    Rakshit, Dibakar
    Romagnoli, Alessandro
    APPLIED THERMAL ENGINEERING, 2019, 151 : 176 - 190
  • [24] The Thermal Charging Performance of Finned Conical Thermal Storage System Filled with Nano-Enhanced Phase Change Material
    Ghalambaz, Mohammad
    Shirivand, Hassan
    Ayoubloo, Kasra Ayoubi
    Mehryan, S. A. M.
    Younis, Obai
    Talebizadehsardari, Pouyan
    Yaici, Wahiba
    MOLECULES, 2021, 26 (06):
  • [25] Potential for nano-enhanced molten salts in solar energy storage
    Saha, S.
    Islam, M. A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 210
  • [26] Enhancing desalination performance of a stepped solar still using nano-enhanced phase change material and condenser integration
    Saleh, Bahaa
    Ahmed, Mohamed H.
    Shanmugan, S.
    Elsheikh, Ammar H.
    El-Sebaey, Mahmoud S.
    Stephen, Mogaji Taye
    Oyedepo, Sunday O.
    Raja, Vijayanandh
    Essa, Fadl A.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 277
  • [27] Development of nano-enhanced phase change material from different biomasses for energy application
    Bhardwaj, Nidhi
    Malik, M. M.
    Sundaramurthy, Suresh
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [28] Solidification of Nano-Enhanced Phase Change Material (NEPCM) in an Enclosure
    Hosseini, M.
    Shirvani, M.
    Azarmanesh, A.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 8 (01): : 21 - 27
  • [29] Nano-enhanced Phase Change Material for thermal management of BICPV
    Sharma, S.
    Micheli, L.
    Chang, W.
    Tahir, A. A.
    Reddy, K. S.
    Mallick, T. K.
    APPLIED ENERGY, 2017, 208 : 719 - 733
  • [30] Experimental study of thermal energy battery working with nano-enhanced phase change material
    Alqahtani, Talal
    Bouzgarrou, Fatma
    Askri, Faouzi
    Sofiene, Mellouli
    Algarni, Salem
    Ghachem, Kaouther
    Kolsi, Lioua
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 34