Differential absorption LIDAR signal denoising using empirical mode decomposition technique

被引:0
|
作者
M. K. Jindal
Mainuddin Mainuddin
S. Veerabuthiran
M. Ashraf
N. Jindal
机构
[1] Instruments Research and Development Establishment,Department of Electronics and Communication Engineering
[2] JMI,undefined
[3] Centre for High Energy Systems and Sciences,undefined
[4] MAIMS,undefined
来源
Optical and Quantum Electronics | 2023年 / 55卷
关键词
Differential absorption LIDAR; SNR; Denoising methods; Empirical mode decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
Differential Absorption Lidar (DIAL) technique is a potential method for the remote detection of hazardous chemicals in the atmosphere. These hazardous chemicals can be due to industrial pollution or may be intentionally released by the terrorist groups or military forces of the enemy country to endanger both the military's personnel and the civilian population's lives. DIAL technique may be used for probing such chemicals from far-off distances of several km ranges and generating an early warning for the response teams. The output of the DIAL system normally consists of three parameters viz. name/class of hazardous chemical detected; its location in terms of distance and the concentration. The maximum standoff distance capability for any Lidar system depends on the signal to noise ratio which is governed by the parameters like atmospheric conditions, Lidar subsystem specifications, noises, etc. SNR is often limited by several noises embedded in the signal from various sources. Due to the presence of noises in the signal, the errors are introduced in the concentration estimation of chemicals from Lidar signal. The methods for improvement of SNR of lidar signal has been often limited by application of conventional denoising techniques like multi-pulse temporal averaging and spatial averaging and further requires nonlinear techniques for noise reduction due to nonlinear behavior of lidar signals. In the present work, Empirical Mode Decomposition (EMD) technique has been implemented on the Lidar signal from Differential Absorption Lidar system. The signal has been denoised and improved SNR is compared with that achieved from temporal averaging and spatial averaging. It was observed that the EMD technique is a better technique as compared to other conventional techniques like multi-pulse temporal averaging and spatial averaging for denoising the signal and increasing the Lidar SNR. It is seen that SNR can be improved 4–5 times the original SNR using EMD technique.
引用
收藏
相关论文
共 50 条
  • [1] Differential absorption LIDAR signal denoising using empirical mode decomposition technique
    Jindal, M. K.
    Mainuddin, Mainuddin
    Veerabuthiran, S.
    Ashraf, M.
    Jindal, N.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)
  • [2] Signal denoising based on empirical mode decomposition
    Klionskiy, Dmitry
    Kupriyanov, Mikhail
    Kaplun, Dmitry
    JOURNAL OF VIBROENGINEERING, 2017, 19 (07) : 5560 - 5570
  • [3] A weighted bio-signal denoising approach using empirical mode decomposition
    Lahmiri S.
    Boukadoum M.
    Biomedical Engineering Letters, 2015, 5 (02) : 131 - 139
  • [4] Improved empirical mode decomposition based denoising method for lidar signals
    Tian, Pengfei
    Cao, Xianjie
    Liang, Jiening
    Zhang, Lei
    Yi, Nana
    Wang, Liying
    Cheng, Xiaoping
    OPTICS COMMUNICATIONS, 2014, 325 : 54 - 59
  • [5] A Gyroscope Signal Denoising Method Based on Empirical Mode Decomposition and Signal Reconstruction
    Liu, Chenchen
    Yang, Zhiqiang
    Shi, Zhen
    Ma, Ji
    Cao, Jian
    SENSORS, 2019, 19 (23)
  • [6] A correlated empirical mode decomposition method for partial discharge signal denoising
    Tang, Ya-Wen
    Tai, Cheng-Chi
    Su, Ching-Chau
    Chen, Chien-Yi
    Chen, Jiann-Fuh
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (08)
  • [7] Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating
    Wang, Wen-Bo
    Zhang, Xiao-Dong
    Chang, Yuchan
    Wang, Xiang-Li
    Wang, Zhao
    Chen, Xi
    Zheng, Lei
    CHINESE PHYSICS B, 2016, 25 (01)
  • [8] Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating
    王文波
    张晓东
    常毓禅
    汪祥莉
    王钊
    陈希
    郑雷
    Chinese Physics B, 2016, (01) : 404 - 410
  • [9] Enhancement of lidar backscatters signal-to-noise ratio using empirical mode decomposition method
    Wu, Songhua
    Liu, Zhishen
    Liu, Bingyi
    OPTICS COMMUNICATIONS, 2006, 267 (01) : 137 - 144
  • [10] Denoising of ECG Signal Based on Empirical Mode Decomposition and Adaptive Noise Cancellation
    Yang, Rendi
    Zhang, Yanli
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 140 - +