Monte-Carlo simulations of rotating clusters

被引:0
|
作者
F. Calvo
P. Labastie
机构
[1] Laboratoire Collisions,
[2] Agrégats,undefined
[3] Réactivité (UMR 5589,undefined
[4] CNRS),undefined
[5] IRSAMC,undefined
[6] Université Paul Sabatier,undefined
[7] 118,undefined
[8] Route de Narbonne,undefined
[9] 31062 Toulouse Cedex,undefined
[10] France,undefined
关键词
PACS. 36.40.Ei Phase transitions in clusters- 82.30.Qt Isomerization and rearrangement- 05.20.Gg Classical ensemble theory;
D O I
暂无
中图分类号
学科分类号
摘要
A new scheme for estimating densities of states at non zero angular momentum is proposed, using the Monte-Carlo (MC) and multiple histogram methods. It is based on a rigorous expression of the classical density of states for a rotating system. Two features appear: the centrifugal energy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} angular momentum and I the instantaneous inertia tensor in the center of mass reference frame) is added to the potential energy and the configurational densities of states is weighted by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Comparing the MC results for the 13-atom Lennard-Jones cluster and a calculation based on molecular dynamics (MD) shows that this weight is important if the rotation induces a structural change at a finite temperature. The MC algorithm proves to be much more efficient than MD, even at finite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:229 / 236
页数:7
相关论文
共 50 条
  • [31] MONTE-CARLO SIMULATIONS OF INTERMETALLIC COMPOUNDS
    MATSUMIYA, T
    NOGAMI, A
    SAWADA, H
    ADVANCED MATERIALS & PROCESSES, 1995, 147 (02): : 51 - 53
  • [32] MONTE-CARLO SIMULATIONS OF PEPTIDE SOLVATION
    MADISON, V
    OSGUTHORPE, DJ
    DAUBER, P
    HAGLER, AT
    BIOPOLYMERS, 1983, 22 (01) : 27 - 31
  • [33] Monte-Carlo simulations for stochastic homogenization
    Z Angew Math Mech ZAMM, Suppl 4 (93):
  • [34] PARALLELIZATION IN MONTE-CARLO SIMULATIONS OF POLYMERS
    WIDMANN, AH
    DEPABLO, JJ
    LASO, M
    SUTER, UW
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 293 - POLY
  • [35] MONTE-CARLO SIMULATIONS OF POLYMERIC SYSTEMS
    FRISCH, HL
    BISHOP, M
    CEPERLEY, D
    KALOS, MH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1982, 184 (SEP): : 71 - POLY
  • [36] MONTE-CARLO SIMULATIONS OF SYSTEMS WITH FERMIONS
    HAMBER, HW
    PHYSICAL REVIEW D, 1981, 24 (04): : 951 - 959
  • [37] MONTE-CARLO SIMULATIONS OF EXPLOSIVE CYCLOGENESIS
    MULLEN, SL
    BAUMHEFNER, DP
    MONTHLY WEATHER REVIEW, 1994, 122 (07) : 1548 - 1568
  • [38] MONTE-CARLO SIMULATIONS OF THE ELECTRON GLASS
    XUE, WG
    LEE, PA
    PHYSICAL REVIEW B, 1988, 38 (13): : 9093 - 9098
  • [39] MONTE-CARLO SIMULATIONS OF ANOMALON EXPERIMENTS
    NOREN, B
    JAKOBSSON, B
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1986, 17 (03): : 265 - 274
  • [40] MONTE-CARLO SIMULATIONS OF AGGREGATION PHENOMENA
    MENCI, N
    COLAFRANCESCO, S
    BIFERALE, L
    JOURNAL DE PHYSIQUE I, 1993, 3 (05): : 1105 - 1118