On the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-Uniqueness of Dynamical Systems with Small Random Perturbation

被引:0
作者
Ludovic Dan Lemle
机构
[1] Politehnica University Timişoara,Department of Electrical Engineering and Industrial IT in Hunedoara
关键词
Uniqueness; dynamical systems; small random perturbation; fokker-Planck equation; 34F05; 47D06; 81Q10; 35Q84;
D O I
10.1007/s00025-019-0954-6
中图分类号
学科分类号
摘要
This article is devoted to study the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-uniqueness (in the sense of essential self-adjointness) for the generator of a dynamical system with small random perturbation. As consequence is obtained the L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1$$\end{document}-uniqueness of the weak solution of the Cauchy problem for the associated Fokker–Planck–Kolmogorov equation.
引用
收藏
相关论文
共 41 条
[1]  
Albanese A(2005)Cores of second order differential linear operators with unbounded coefficients on Semigroups Forum 70 278-295
[2]  
Mangino E(2009)-uniqueness for elliptic operators with unbounded coefficients in J. Funct. Anal. 256 1238-1257
[3]  
Albanese A(1992)An approximate criterium of essential self-adjointness of Dirichlet operators Potential Anal. 1 307-317
[4]  
Lorenzi L(2006)Schrödinger operators with unbounded drift J. Oper. Theory 55 185-211
[5]  
Mangino E(1997)Elliptic regularity and essential self-adjointness of Dirichlet operators on Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24 451-461
[6]  
Albeverio S(2008)On parabolic equation for measures Commun. Partial Differ. Equ. 33 397-418
[7]  
Kondratiev YuG(2011)On the uniqueness problems related to the Fokker–Planck–Kolmogorov equation for measures J. Math. Sci. 179 7-47
[8]  
Röckner M(2000)-uniqueness of non-symmetric diffusion operators with singular drift coefficients J. Funct. Anal. 173 328-342
[9]  
Arendt W(2010)Existence and uniqueness for Carpath. J. Math. 26 67-76
[10]  
Metafune G(2011)-semigroups on the dual of a Banach space Semigroup Forum 82 485-496