High-order spectral collocation method using tempered fractional Sturm–Liouville eigenproblems

被引:0
作者
Sayed A. Dahy
H. M. El-Hawary
Alaa Fahim
Tarek Aboelenen
机构
[1] Faculty of Science,Mathematics Department
[2] Assiut University,Department of Mathematics
[3] Unaizah College of Sciences and Arts,undefined
[4] Qassim University,undefined
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Sturm–Liouville eigenproblems; Fractional Lagrange interpolants; Tempered fractional differentiation matrix; Fractional Derivatives; TFPDEs; Exponential convergence; 65M22; 65M70; 65N35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents an accurate exponential tempered fractional spectral collocation method (TFSCM) to solve one-dimensional and time-dependent tempered fractional partial differential equations (TFPDEs). We use a family of tempered fractional Sturm–Liouville eigenproblems (TFSLP) as a basis and the fractional Lagrange interpolants (FLIs) that generally satisfy the Kronecker delta (KD) function at the employed collocation points. Firstly, we drive the corresponding tempered fractional differentiation matrices (TFDMs). Then, we treat with various linear and nonlinear TFPDEs, among them, the space-tempered fractional advection and diffusion problem, the time-space tempered fractional advection–diffusion problem (TFADP), the multi-term time-space tempered fractional problems, and the time-space tempered fractional Burgers’ equation (TFBE) to investigate the numerical capability of the fractional collocation method. The study includes a numerical examination of the produced condition number κ(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa (A)$$\end{document} of the linear systems. The accuracy and efficiency of the proposed method are studied from the standpoint of the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty $$\end{document}-norm error and exponential rate of spectral convergence.
引用
收藏
相关论文
共 109 条
  • [1] Aboelenen T(2018)Local discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger-type equations Nonlinear Dyn 92 395-413
  • [2] Bhrawy A(2014)Efficient generalized Laguerre-spectral methods for solving multi-term fractional differential equations on the half line J Vib Control 20 973-985
  • [3] Baleanu D(2017)Solving fractional optimal control problems within a Chebyshev-Legendre operational technique Int J Control 90 1230-1244
  • [4] Assas L(2021)On a multigrid method for tempered fractional diffusion equations Fractal Fractional 5 145-85
  • [5] Bhrawy AH(2020)Dedalus: A flexible framework for numerical simulations with spectral methods Phys Rev Res 2 83-310
  • [6] Ezz-Eldien SS(1972)Decomposition of an integral operator by use of Mikusiński calculus SIAM J Math Anal 3 284-754
  • [7] Doha EH(2017)Efficient modified Chebyshev differentiation matrices for fractional differential equations Commun Nonlinear Sci Numer Simul 50 717-149
  • [8] Abdelkawy MA(2017)Fast predictor-corrector approach for the tempered fractional differential equations Num Algorithms 74 125-8056
  • [9] Baleanu D(2018)Boundary problems for the fractional and tempered fractional operators Multiscale Model Simul 16 8042-5672
  • [10] Bu L(2013)On shifted jacobi spectral approximations for solving fractional differential equations Appl Math Comput 219 5662-6251