Stability for a boundary contact problem in thermoelastic Timoshenko’s beam

被引:0
作者
J. E. Munoz Rivera
C. A. da Costa Baldez
机构
[1] Universidad del Bío-Bío,Department of Mathematics
[2] National Laboratory for Scientific Computation,Department of Mathematics
[3] Federal University of Pará,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2021年 / 72卷
关键词
Timoshenko’s beams; Thermoelasticity; Contact problem; Semilinear problem; Asymptotic behaviour; Numerical solution; 35Q74; 35Q79; 35D40; 35D30; 65N22;
D O I
暂无
中图分类号
学科分类号
摘要
We demonstrate the existence of solutions to Signorini’s problem for the Timoshenko’s beam by using a hybrid disturbance. This disturbance enables the use of semigroup theory to show the existence and asymptotic stability. We show that stability is exponential, when the waves speed of propagation is equal. When the waves speed is different, we show that the solution decays polynomially. This result is new. We perform numerical experiments to visualize the asymptotic properties.
引用
收藏
相关论文
共 37 条
  • [1] Timoshenko SP(1921)On the correction for shear of the differential equation for transversal vibrations of prismatic bars Philos. Mag. Ser. 6 744-746
  • [2] Andrews KT(1996)On the dynamic vibrations of a elastic beam in frictional contact with a rigid obstacle J. Elast. 42 1-30
  • [3] Shillor M(2001)Vibrations of a beam between two stops Dyn. Contin. Discrete Impuls. Syst. Sér. B Appl. Algorithms 8 93-110
  • [4] Wright S(1993)A one dimensional quasi-static contact problem in linear thermoelasticity Eur. J. Appl. Math. 4 151-174
  • [5] Kutter KL(2006)Vibrations of a beam between stops: convergence of a fully discretized approximation Math. Model. Numer. Anal. 40 705-734
  • [6] Shillor M(2008)Exponential decay for a thermoelastic beam between tow stops J. Therm. Stress 31 537-556
  • [7] Copetti MIM(2014)A contact problem for a thermoelastic Timoshenko beam Z. Angew. Math. Phys. 66 1-20
  • [8] Elliot CM(2001)Exponential stability to a contact problem of partially viscoelastic materials J. Elast. 63 87-111
  • [9] Dumont Y(2014)Stability to 1-D thermoelastic Timoshenko beam acting on shear force Z. Angew. Math. Phys. 65 1233-1249
  • [10] Paoli L(2013)Stability to weakly dissipative Timoshenko systems Math. Methods Appl. Sci. 36 1965-1976