Congruences for arithmetic functions

被引:0
作者
Wu-Xia Ma
Yong-Gao Chen
机构
[1] Nanjing Normal University,School of Mathematical Sciences and Institute of Mathematics
来源
The Ramanujan Journal | 2022年 / 58卷
关键词
Arithmetic functions; Congruences; Divisor function; Sum-of-divisors function; Euler’s totient function; Colored partitions; 11A25; 11A07; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by congruences for partitions, we study congruences for three well known arithmetic functions: the divisor function d(n), the sum-of-divisors function σ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (n)$$\end{document} and Euler’s totient function ϕ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (n)$$\end{document}. In this paper, for f(n)=d(n),σ(n),ϕ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(n)=d(n), \sigma (n), \phi (n)$$\end{document} we determine all a, b, c, m such that f(an+b)≡c(modm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(an+b)\equiv c\pmod m$$\end{document} for all nonnegative integers n. These results are useful to find congruences for generalized colored partitions.
引用
收藏
页码:651 / 666
页数:15
相关论文
共 27 条
  • [1] Alaoglu L(1944)A conjecture in elementary number theory Bull. Am. Math. Soc. 50 881-882
  • [2] Erdős P(2006)Coincidences in the values of the Euler and Carmichael functions Acta Arith. 122 207-234
  • [3] Banks WD(2019)Diophantine equations involving Euler’s totient function Acta Arith. 191 33-65
  • [4] Friedlander JB(1936)On a problem of Chowla and some related problems Proc. Camb. Philos. Soc. 32 530-540
  • [5] Luca F(1952)The distribution of values of the divisor function Proc. Lond. Math. Soc. 2 257-271
  • [6] Pappalardi F(1980)On some new properties of functions Mat. Lapok 28 125-131
  • [7] Shparlinski IE(1987), Proc. Am. Math. Soc. 101 1-7
  • [8] Chen Y-G(2008), Acta Arith. 133 199-208
  • [9] Tian H(1984) and Mathematika 31 141-149
  • [10] Erdős P(2009)On locally repeated values of certain arithmetic functions, III Acta Arith. 138 337-346