Growth of the dilute magnetic semiconductor GaMnN by molecular-beam epitaxy

被引:0
|
作者
M. E. Overberg
G. T. Thaler
C. R. Abernathy
N. A. Theodoropoulou
K. T. McCarthy
S. B. Arnason
J. S. Lee
J. D. Lim
S. B. Shim
K. S. Suh
Z. G. Khim
Y. D. Park
S. J. Pearton
A. F. Hebard
机构
[1] University of Florida,Department of Materials Science and Engineering
[2] University of Florida,Department of Physics
[3] Seoul National University,Center for Strongly Correlated Materials Research
来源
Journal of Electronic Materials | 2003年 / 32卷
关键词
GaMnN; MBE; ferromagnetic; dilute magnetic semiconductor; molecular beam epitaxy; MOCVD;
D O I
暂无
中图分类号
学科分类号
摘要
Growth by molecular-beam epitaxy (MBE) of the dilute-magnetic alloy GaMnN is reported. The Mn concentration, as determined by Auger electron spectroscopy (AES), is found to be linear with increasing Mn-cell temperature up to ∼43at.%Mn. No second phases are observed for Mn levels below 9 at.%. The cubic-phase Mn4N is found to be the thermodynamically stable phase at the growth conditions used to produce GaMnN. Hysteresis in M versus H is observed in both GaMnN and GaMnN:C grown on both sapphire and metal-oxide chemical-vapor deposition (MOCVD) GaN at several growth temperatures. Magnetotransport results show the anomalous Hall effect, negative magnetoresistance, and magnetic hysteresis, indicating that Mn is incorporating into the GaN and forming the ferromagnetic-semiconductor GaMNN. Room-temperature hysteresis is obtained in magnetization measurements with an optimum Mn concentration of ∼3 at.%.
引用
收藏
页码:298 / 306
页数:8
相关论文
共 50 条
  • [21] Chapter 6 Molecular-Beam Epitaxy of II-VI Semiconductor Microstructures
    Gunshor, Robert L.
    Kolodziejski, Leslie A.
    Nurmikko, Arto V.
    Otsuka, Nobuo
    Semiconductors and Semimetals, 1990, 33 (0C) : 337 - 409
  • [22] GaFeAs: a diluted magnetic semiconductor grown by molecular beam epitaxy
    Hirose, S
    Yamaura, M
    Haneda, S
    Hara, K
    Munekata, H
    THIN SOLID FILMS, 2000, 371 (1-2) : 272 - 277
  • [23] Growth of semiconductor alloy InGaPBi on InP by molecular beam epitaxy
    Wang, K.
    Wang, P.
    Pan, W. W.
    Wu, X. Y.
    Yue, L.
    Gong, Q.
    Wang, S. M.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (09)
  • [24] NEWLY DESIGNED HG CELL FOR MOLECULAR-BEAM EPITAXY GROWTH OF CDHGTE
    HASEYAMA, K
    SUGIURA, O
    HAGA, R
    SUGAHARA, S
    MATSUMURA, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1991, 30 (2A): : L202 - L204
  • [25] Evidence for the anomalous scaling behaviour of the molecular-beam epitaxy growth equation
    唐刚
    夏辉
    郝大鹏
    寻之朋
    温荣吉
    陈玉岭
    ChinesePhysicsB, 2011, 20 (03) : 358 - 363
  • [26] Growth of GaAs1-xBix Layers by Molecular-Beam Epitaxy
    Semyagin, B. R.
    Kolesnikov, A. V.
    Putyato, M. A.
    Preobrazhenskii, V. V.
    Popova, T. B.
    Ushanov, V. I.
    Chaldyshev, V. V.
    SEMICONDUCTORS, 2023, 57 (09) : 405 - 409
  • [27] Evidence for the anomalous scaling behaviour of the molecular-beam epitaxy growth equation
    Tang Gang
    Xia Hui
    Hao Da-Peng
    Xun Zhi-Peng
    Wen Rong-Ji
    Chen Yu-Ling
    CHINESE PHYSICS B, 2011, 20 (03)
  • [28] Sapphire surface preparation for the growth of silicon layers by molecular-beam epitaxy
    S. A. Denisov
    V. Yu. Chalkov
    V. G. Shengurov
    S. P. Svetlov
    D. A. Pavlov
    E. A. Pitirimova
    Inorganic Materials, 2010, 46 : 693 - 702
  • [29] Growth of GaAs1–xBix Layers by Molecular-Beam Epitaxy
    B. R. Semyagin
    A. V. Kolesnikov
    M. A. Putyato
    V. V. Preobrazhenskii
    T. B. Popova
    V. I. Ushanov
    V. V. Chaldyshev
    Semiconductors, 2023, 57 : 405 - 409
  • [30] A NEW SI DOPING SOURCE FOR GAAS GROWTH BY MOLECULAR-BEAM EPITAXY
    HORIKOSHI, Y
    FAHY, MR
    KAWASHIMA, M
    FURUKAWA, K
    FUJINO, M
    MATSUMOTO, N
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1994, 33 (3B): : L413 - L416