A global minimization algorithm for Lipschitz functions

被引:0
作者
M. Gaviano
D. Lera
机构
[1] University of Cagliari,Dipartimento di Matematica e Informatica
来源
Optimization Letters | 2008年 / 2卷
关键词
Random search; Global optimization; Lipschitz function;
D O I
暂无
中图分类号
学科分类号
摘要
The global optimization problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${ \min_{x \in S} f(x)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S=[a,b], a, b \in {\bf R}^n}$$\end{document} and f(x) satisfying the Lipschitz condition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|f(x) - f(y)| \leq l\|x-y\|_\infty, \enspace\forall x,y \,{\in}\, S, \ l > 0}$$\end{document} , is considered. To solve it a region-search algorithm is introduced. This combines a local minimum algorithm with a procedure that at the ith iteration finds a region Si where the global minimum has to be searched for. Specifically, by making use of the Lipschitz condition, Si, which is a sequence of intervals, is constructed by leaving out from Si-1 an interval where the global minimum cannot be located. A convergence property of the algorithm is given. Further, the ratio between the measure of the initial feasible region and that of the unexplored region may be used as stop rule. Numerical experiments are carried out; these show that the algorithm works well in finding and reducing the measure of the unexplored region.
引用
收藏
页码:1 / 13
页数:12
相关论文
共 29 条
  • [1] Basso P.(1982)Iterative methods for the localization of the global maximum SIAM J. Num. Anal. 19 781-792
  • [2] Devroye L.P.(1978)Progressive global random search of continuous functions Math. Program. 15 330-342
  • [3] Ellaia R.(1996)Global optimization of Hölder functions J. Global Optim. 8 323-348
  • [4] Gourdin E.(1971)Numerical methods for finding extrema of a function (case of a non-uniform mesh) USSR Computational Mathematics and Mathematical Physics 11 38-54
  • [5] Jaumard B.(2003)Software for generation of classes of test functions with known local and global minima for global optimization ACM TOMS, 29 469-480
  • [6] Evtushenko Yu.G.(1992)Global optimization of univariate Lipschitz functions: 1. Survey and properties Math. Program. 55 251-272
  • [7] Gaviano M.(1992)Global optimization of univariate Lipschitz functions: 2. New algorithms and computational comparison Math. Program. 55 273-293
  • [8] Kvasov D.E.(2000)Recent developments and trends in global optimization Journ. Comp. Appl. Math., 124 209-228
  • [9] Lera D.(1986)Extended univariate algorithms for n-dimensional global optimization Computing 36 91-103
  • [10] Sergeyev Ya.D.(1992)Convergence qualification of adaptive partition algorithms in global optimization Math. Program. 56 343-360