Use of small-scale quantum computers in cryptography with many-qubit entangled states

被引:0
作者
K. V. Bayandin
G. B. Lesovik
机构
[1] Russian Academy of Sciences,Landau Institute for Theoretical Physics
来源
Journal of Experimental and Theoretical Physics Letters | 2005年 / 81卷
关键词
03.67.−a;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a new cryptographic protocol. It is suggested to encode information in ordinary binary form into many-qubit entangled states with the help of a quantum computer. A state of qubits (realized, e.g., with photons) is transmitted through a quantum channel to the addressee, who applies a quantum computer tuned to realize the inverse unitary-transformation decoding of the message. Different ways of eavesdropping are considered, and an estimate of the time needed for determining the secret unitary transformation is given. It is shown that using even small quantum computers can serve as a basis for very efficient cryptographic protocols. For a suggested cryptographic protocol, the time scale on which communication can be considered secure is exponential in the number of qubits in the entangled states and in the number of gates used to construct the quantum network.
引用
收藏
页码:351 / 355
页数:4
相关论文
共 23 条
[1]  
Feynman R.(1982)undefined Int. J. Theor. Phys. 21 467-undefined
[2]  
Deutsch D.(1985)undefined Proc. R. Soc. London, Ser. A 400 97-undefined
[3]  
Shor P. W.(1997)undefined SIAM J. Comput. 26 1484-undefined
[4]  
Bennet C. H.(1992)undefined J. Cryptology 5 3-undefined
[5]  
Muller A.(1993)undefined Europhys. Lett. 23 383-undefined
[6]  
Breguet J.(1992)undefined Phys. Rev. Lett. 69 1293-undefined
[7]  
Gisin N.(1969)undefined Phys. Rev. Lett. 23 880-undefined
[8]  
Ekert A. K.(1995)undefined Phys. Rev. Lett. 74 4091-undefined
[9]  
Clauser J. F.(1997)undefined Science 275 350-undefined
[10]  
Horne M. A.(1996)undefined Rev. Mod. Phys. 68 733-undefined