Complexity analysis and numerical implementation of a full-Newton step interior-point algorithm for LCCO

被引:0
|
作者
Mohamed Achache
Moufida Goutali
机构
[1] Université Ferhat Abbas de Sétif1,Laboratoire de Mathématiques Fondamentales et Numériques
[2] Université Ferhat Abbas de Sétif1,Département de Mathématiques, Faculté des Sciences
来源
Numerical Algorithms | 2015年 / 70卷
关键词
Linearly constrained convex optimization; Interior point methods; Short-step primal-dual algorithms; Complexity of algorithms; 90C25; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a primal-dual interior point algorithm for linearly constrained convex optimization (LCCO). The algorithm uses only full-Newton step to update iterates with an appropriate proximity measure for controlling feasible iterations near the central path during the solution process. The favorable polynomial complexity bound for the algorithm with short-step method is obtained, namely O(nlogn𝜖)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt {n}\log \frac {n}{\epsilon })$\end{document} which is as good as the linear and convex quadratic optimization analogue. Numerical results are reported to show the efficiency of the algorithm.
引用
收藏
页码:393 / 405
页数:12
相关论文
共 50 条