Oxidation of F-actin controls the terminal steps of cytokinesis

被引:0
|
作者
Stéphane Frémont
Hussein Hammich
Jian Bai
Hugo Wioland
Kerstin Klinkert
Murielle Rocancourt
Carlos Kikuti
David Stroebel
Guillaume Romet-Lemonne
Olena Pylypenko
Anne Houdusse
Arnaud Echard
机构
[1] Membrane Traffic and Cell Division Lab,
[2] Cell Biology and Infection Department Institut Pasteur,undefined
[3] Centre National de la Recherche Scientifique UMR3691,undefined
[4] Structural Motility,undefined
[5] Institut Curie,undefined
[6] PSL Research University,undefined
[7] ,undefined
[8] Sorbonne Universités,undefined
[9] Institut Jacques Monod,undefined
[10] CNRS,undefined
[11] Université Paris Diderot,undefined
[12] Université Sorbonne Paris Cité,undefined
[13] Ecole Normale Supérieure,undefined
[14] PSL Research University,undefined
[15] CNRS,undefined
[16] INSERM,undefined
[17] Institut de Biologie de l'École Normale Supérieure (IBENS),undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division.
引用
收藏
相关论文
共 50 条
  • [41] Nematic textures in F-actin
    Das, P
    Roy, J
    Chakrabarti, N
    Basu, S
    Das, U
    JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (20): : 9028 - 9035
  • [42] F-actin organizes the nucleus
    Henna M. Moore
    Maria K. Vartiainen
    Nature Cell Biology, 2017, 19 : 1386 - 1388
  • [43] UNIDIRECTIONAL GROWTH OF F-ACTIN
    KONDO, H
    ISHIWATA, S
    JOURNAL OF BIOCHEMISTRY, 1976, 79 (01): : 159 - 171
  • [44] STRUCTURE OF F-ACTIN SOLUTIONS
    KASAI, M
    KAWASHIMA, H
    OOSAWA, F
    JOURNAL OF POLYMER SCIENCE, 1960, 44 (143): : 51 - 69
  • [45] BINDING OF MYOSIN A TO F-ACTIN
    TONOMURA, Y
    SEKIYA, K
    TOKURA, S
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1962, 237 (04) : 1074 - &
  • [46] Friction of F-actin knots
    Kirchner, Helmut O.
    Neukirch, Sebastien
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2010, 3 (01) : 121 - 123
  • [47] Modeling of the F-actin structure
    Oda, Toshiro
    Stegmann, Heiko
    Schroeder, Rasmus R.
    Namba, Keiichi
    Maeda, Yuichiro
    REGULATORY MECHANISMS OF STRIATED MUSCLE CONTRACTION, 2007, 592 : 385 - 401
  • [48] F-actin blot overlays
    Luna, EJ
    MOLECULAR MOTORS AND THE CYTOSKELETON, PT B, 1998, 298 : 32 - 42
  • [49] Structural dynamics of F-actin
    Orlova, A
    Galkin, VE
    Egelman, EH
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 361A - 361A
  • [50] SUPERCOILING OF F-ACTIN FILAMENTS
    LEDNEV, VV
    POPP, D
    JOURNAL OF STRUCTURAL BIOLOGY, 1990, 103 (03) : 225 - 231