Interplay between materials and microfluidics

被引:349
作者
Hou, Xu [1 ,2 ,3 ,4 ,5 ]
Zhang, Yu Shrike [1 ,2 ,6 ]
Santiago, Grissel Trujillo-de [1 ,2 ,7 ,8 ]
Alvarez, Mario Moises [1 ,2 ,7 ,8 ]
Ribas, Joao [1 ,2 ,9 ]
Jonas, Steven J. [10 ,11 ,13 ,14 ]
Weiss, Paul S. [6 ,12 ,13 ,14 ]
Andrews, Anne M. [12 ,13 ,15 ]
Aizenberg, Joanna [6 ,16 ]
Khademhosseini, Ali [1 ,2 ,7 ,17 ,18 ]
机构
[1] Harvard Med Sch, Biomat Innovat Res Ctr, Div Engn Med, Dept Med,Brigham & Womens Hosp, Cambridge, MA 02139 USA
[2] Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Xiamen Univ, Coll Chem & Chem Engn, Xiamen, Peoples R China
[4] Xiamen Univ, Coll Phys Sci & Technol, Xiamen, Peoples R China
[5] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, State Key Lab Phys Chem Solid Surfaces, Collaborat Innovat Ctr Chem Energy Mat, Xiamen 361005, Fujian, Peoples R China
[6] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[7] MIT, Microsyst Technol Labs, Cambridge, MA 02139 USA
[8] Tecnol Monterrey Monterrey, Ctr Biotecnol FEMSA, Monterrey 64849, Nuevo Leon, Mexico
[9] Univ Coimbra, Inst Interdisciplinary Res, Doctoral Programme Expt Biol & Biomed, P-3030789 Coimbra, Portugal
[10] Univ Calif Los Angeles, David Geffen Sch Med, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, Dept Pediat, Los Angeles, CA 90095 USA
[11] Univ Calif Los Angeles, Childrens Discovery & Innovat Inst, Los Angeles, CA USA
[12] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[13] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[14] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA
[15] Univ Calif Los Angeles, Dept Psychiat & Biobehav Sci, Los Angeles, CA 90095 USA
[16] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[17] Konkuk Univ, Coll Anim Biosci & Technol, Dept Bioind Technol, Seoul 143701, South Korea
[18] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia
关键词
STOP-FLOW LITHOGRAPHY; STEM-CELL NICHE; PROTEIN CRYSTALLIZATION; TISSUE CONSTRUCTS; PHASE-BEHAVIOR; FABRICATION; DEVICES; HYDROGELS; CHIP; PDMS;
D O I
10.1038/natrevmats.2017.16
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developments in the field of microfluidics have triggered technological revolutions in many disciplines, including chemical synthesis, electronics, diagnostics, single-cell analysis, micro-and nanofabrication, and pharmaceutics. In many of these areas, rapid growth is driven by the increasing synergy between fundamental materials development and new microfluidic capabilities. In this Review, we critically evaluate both how recent advances in materials fabrication have expanded the frontiers of microfluidic platforms and how the improved microfluidic capabilities are, in turn, furthering materials design. We discuss how various inorganic and organic materials enable the fabrication of systems with advanced mechanical, optical, chemical, electrical and biointerfacial properties -in particular, when these materials are combined into new hybrids and modular configurations. The increasing sophistication of microfluidic techniques has also expanded the range of resources available for the fabrication of new materials, including particles and fibres with specific functionalities, 3D (bio) printed composites and organoids. Together, these advances lead to complex, multifunctional systems, which have many interesting potential applications, especially in the biomedical and bioengineering domains. Future exploration of the interactions between materials science and microfluidics will continue to enrich the diversity of applications across engineering as well as the physical and biomedical sciences.
引用
收藏
页数:15
相关论文
共 184 条
[1]   Protein Crystallization in an Actuated Microfluidic Nanowell Device [J].
Abdallah, Bahige G. ;
Roy-Chowdhury, Shatabdi ;
Fromme, Raimund ;
Fromme, Petra ;
Ros, Alexandra .
CRYSTAL GROWTH & DESIGN, 2016, 16 (04) :2074-2082
[2]   On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system [J].
Adamo, Andrea ;
Beingessner, Rachel L. ;
Behnam, Mohsen ;
Chen, Jie ;
Jamison, Timothy F. ;
Jensen, Klavs F. ;
Monbaliu, Jean-Christophe M. ;
Myerson, Allan S. ;
Revalor, Eve M. ;
Snead, David R. ;
Stelzer, Torsten ;
Weeranoppanant, Nopphon ;
Wong, Shin Yee ;
Zhang, Ping .
SCIENCE, 2016, 352 (6281) :61-67
[3]   Direct selective laser sintering of metals [J].
Agarwala, Mukesh ;
Bourell, David ;
Beaman, Joseph ;
Marcus, Harris ;
Barlow, Joel .
RAPID PROTOTYPING JOURNAL, 1995, 1 (01) :26-36
[4]   Cell-Instructive Microgels with Tailor-Made Physicochemical Properties [J].
Allazetta, Simone ;
Kolb, Laura ;
Zerbib, Samantha ;
Bardy, Jo'an ;
Lutolf, Matthias P. .
SMALL, 2015, 11 (42) :5647-5656
[5]  
Amstad E., 2012, ANGEW CHEM, V124, P12667, DOI DOI 10.1002/ANGE.201206531
[6]   Production of amorphous nanoparticles by supersonic spray-drying with a microfluidic nebulator [J].
Amstad, Esther ;
Gopinadhan, Manesh ;
Holtze, Christian ;
Osuji, Chinedum O. ;
Brenner, Michael P. ;
Spaepen, Frans ;
Weitz, David A. .
SCIENCE, 2015, 349 (6251) :956-960
[7]   Hydrogel-coated microfluidic channels for cardiomyocyte culture [J].
Annabi, Nasim ;
Selimovic, Seila ;
Acevedo Cox, Juan Pablo ;
Ribas, Joao ;
Bakooshli, Mohsen Afshar ;
Heintze, Deborah ;
Weiss, Anthony S. ;
Cropek, Donald ;
Khademhosseini, Ali .
LAB ON A CHIP, 2013, 13 (18) :3569-3577
[8]   3D-Printed Microfluidics [J].
Au, Anthony K. ;
Huynh, Wilson ;
Horowitz, Lisa F. ;
Folch, Albert .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) :3862-3881
[9]   Novel hybrid material for microfluidic devices [J].
Aura, Susanna ;
Sikanen, Tiina ;
Kotiaho, Tapio ;
Franssila, Sami .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 132 (02) :397-403
[10]  
Ayuso J. M., 2013, MOL BIOL CELL, P24