Personalized models for facial emotion recognition through transfer learning

被引:0
|
作者
Martina Rescigno
Matteo Spezialetti
Silvia Rossi
机构
[1] University of Naples Federico II,Department of Electrical Engineering and Information Technology
来源
Multimedia Tools and Applications | 2020年 / 79卷
关键词
Facial emotion recognition; Convolutional neural networks; Transfer learning; Affective computing;
D O I
暂无
中图分类号
学科分类号
摘要
Emotions represent a key aspect of human life and behavior. In recent years, automatic recognition of emotions has become an important component in the fields of affective computing and human-machine interaction. Among many physiological and kinematic signals that could be used to recognize emotions, acquiring facial expression images is one of the most natural and inexpensive approaches. The creation of a generalized, inter-subject, model for emotion recognition from facial expression is still a challenge, due to anatomical, cultural and environmental differences. On the other hand, using traditional machine learning approaches to create a subject-customized, personal, model would require a large dataset of labelled samples. For these reasons, in this work, we propose the use of transfer learning to produce subject-specific models for extracting the emotional content of facial images in the valence/arousal dimensions. Transfer learning allows us to reuse the knowledge assimilated from a large multi-subject dataset by a deep-convolutional neural network and employ the feature extraction capability in the single subject scenario. In this way, it is possible to reduce the amount of labelled data necessary to train a personalized model, with respect to relying just on subjective data. Our results suggest that generalized transferred knowledge, in conjunction with a small amount of personal data, is sufficient to obtain high recognition performances and improvement with respect to both a generalized model and personal models. For both valence and arousal dimensions, quite good performances were obtained (RMSE = 0.09 and RMSE = 0.1 for valence and arousal, respectively). Overall results suggested that both the transferred knowledge and the personal data helped in achieving this improvement, even though they alternated in providing the main contribution. Moreover, in this task, we observed that the benefits of transferring knowledge are so remarkable that no specific active or passive sampling techniques are needed for selecting images to be labelled.
引用
收藏
页码:35811 / 35828
页数:17
相关论文
共 50 条
  • [21] Facial Emotion Recognition with Varying Poses and/or Partial Occlusion Using Multi-stage Progressive Transfer Learning
    Aly, Sherin F.
    Abbott, A. Lynn
    IMAGE ANALYSIS, 2019, 11482 : 101 - 112
  • [22] Conversational transfer learning for emotion recognition
    Hazarika, Devamanyu
    Poria, Soujanya
    Zimmermann, Roger
    Mihalcea, Rada
    INFORMATION FUSION, 2021, 65 : 1 - 12
  • [23] Transfer Learning for Speech Emotion Recognition
    Han Zhijie
    Zhao, Huijuan
    Wang, Ruchuan
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 96 - 99
  • [24] Brain-Machine Coupled Learning Method for Facial Emotion Recognition
    Liu, Dongjun
    Dai, Weichen
    Zhang, Hangkui
    Jin, Xuanyu
    Cao, Jianting
    Kong, Wanzeng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (09) : 10703 - 10717
  • [25] An efficient deep learning technique for facial emotion recognition
    Khattak, Asad
    Asghar, Muhammad Zubair
    Ali, Mushtaq
    Batool, Ulfat
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (02) : 1649 - 1683
  • [26] An efficient deep learning technique for facial emotion recognition
    Asad Khattak
    Muhammad Zubair Asghar
    Mushtaq Ali
    Ulfat Batool
    Multimedia Tools and Applications, 2022, 81 : 1649 - 1683
  • [27] An Embedded Continual Learning System for Facial Emotion Recognition
    Antoni, Olivier
    Mainsant, Marion
    Godin, Christelle
    Mermillod, Martial
    Reyboz, Marina
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT VI, 2023, 13718 : 631 - 635
  • [28] Reducing Videoconferencing Fatigue through Facial Emotion Recognition
    Roessler, Jannik
    Sun, Jiachen
    Gloor, Peter
    FUTURE INTERNET, 2021, 13 (05):
  • [29] Facial Expression Recognition with Identity and Emotion Joint Learning
    Li, Ming
    Xu, Hao
    Huang, Xingchang
    Song, Zhanmei
    Liu, Xiaolin
    Li, Xin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2021, 12 (02) : 544 - 550
  • [30] Mixture of Emotion Dependent Experts: Facial Expressions Recognition in Videos Through Stacked Expert Models
    Salman, Ali N.
    Rosero, Karen
    Goncalves, Lucas
    Busso, Carlos
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2025, 6 : 323 - 332