A Note on Cohomology of Clifford Algebras

被引:0
|
作者
Banerjee, Bikram [1 ]
Mukherjee, Goutam [2 ,3 ]
机构
[1] Ranaghat Coll, Dept Math, Ranaghat 741201, WB, India
[2] Inst Adv Intelligence, TCG Ctr Res & Educ Sci & Technol, Kolkata 700091, West Bengal, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Clifford algebra; Deformation theory; Hochschild cohomology; Spin manifold;
D O I
10.1007/s00006-024-01324-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by Clifford cohomology. We show that Clifford cohomology controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold M which admits a Spinc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Spin<^>{c}$$\end{document} structure.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The structure of norm Clifford algebras
    Keller, Hans A.
    Ochsenius, Herminia
    MATHEMATICA SLOVACA, 2012, 62 (06) : 1105 - 1120
  • [22] On Hyperbolic Clifford Algebras with Involution
    Mahmoudi, M. G.
    ALGEBRA COLLOQUIUM, 2013, 20 (02) : 251 - 260
  • [23] Method of Averaging in Clifford Algebras
    D. S. Shirokov
    Advances in Applied Clifford Algebras, 2017, 27 : 149 - 163
  • [24] Unitary spaces on Clifford algebras
    Marchuk, N. G.
    Shirokov, D. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (02) : 237 - 254
  • [25] Ideal Structure of Clifford Algebras
    Yi Ming Zou
    Advances in Applied Clifford Algebras, 2009, 19 : 147 - 153
  • [26] Mathematical structure of clifford algebras
    Porteous, I
    LECTURES ON CLIFFORD (GEOMETRIC) ALGEBRAS AND APPLICATIONS, 2004, : 31 - 52
  • [27] Extended Grassmann and Clifford Algebras
    R. da Rocha
    J. Vaz
    Advances in Applied Clifford Algebras, 2006, 16 : 103 - 125
  • [28] Tensor products of Clifford algebras
    N. G. Marchuk
    Doklady Mathematics, 2013, 87 : 185 - 188
  • [29] Ideal Structure of Clifford Algebras
    Zou, Yi Ming
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (01) : 147 - 153
  • [30] Clifford algebras of hyperbolic involutions
    R. Skip Garibaldi
    Mathematische Zeitschrift, 2001, 236 : 321 - 349