A Note on Cohomology of Clifford Algebras

被引:0
作者
Banerjee, Bikram [1 ]
Mukherjee, Goutam [2 ,3 ]
机构
[1] Ranaghat Coll, Dept Math, Ranaghat 741201, WB, India
[2] Inst Adv Intelligence, TCG Ctr Res & Educ Sci & Technol, Kolkata 700091, West Bengal, India
[3] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
关键词
Clifford algebra; Deformation theory; Hochschild cohomology; Spin manifold;
D O I
10.1007/s00006-024-01324-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by Clifford cohomology. We show that Clifford cohomology controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold M which admits a Spinc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Spin<^>{c}$$\end{document} structure.
引用
收藏
页数:12
相关论文
共 12 条
[1]  
Bursztyn H., 2010, CLAY MATH P, V16
[2]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[3]  
Gerstenhaber M., 1988, NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, V247
[4]  
Kassel C., 2006, Ecole thematique. Ao t 2004 a ICTP
[5]   Deformation quantization of algebraic varieties [J].
Kontsevich, M .
LETTERS IN MATHEMATICAL PHYSICS, 2001, 56 (03) :271-294
[6]  
Lam T., 1999, Graduate Texts in Mathematics No. 189, DOI DOI 10.1017/CBO9780511546525
[7]  
Lawson H.B., 1990, Spin Geometry
[8]  
Loday J.-L., 1992, CYCLIC HOMOLOGY
[9]  
Lounesto P., 1997, Clifford Algebras and Spinors
[10]  
Lundholm D, 2009, Arxiv, DOI arXiv:0907.5356