In this paper, we investigate a notion of the generalized relative operator entropy, which develops the theory of the relative operator entropy introduced by Fujii and Kamei, and a notion of the Csiszar operator f-divergence mapping. We estimate some upper and lower bounds of the generalized relative operator entropy and generalized operator Shannon entropy. In particular, we reach some new bounds for the relative operator entropy, the operator q-geometric mean, and the χ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi ^2$$\end{document}-divergence. Mainly, our results extend some known operator inequalities.
机构:
Sci Univ Tokyo, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, JapanSci Univ Tokyo, Fac Sci, Dept Math Informat Sci, Shinjuku Ku, Tokyo 1628601, Japan
机构:
Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R ChinaHainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
Fu, Xiaohui
Yang, Junjian
论文数: 0引用数: 0
h-index: 0
机构:
Hainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R ChinaHainan Normal Univ, Sch Math & Stat, Haikou 571158, Hainan, Peoples R China
机构:
Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Hon Hai Foxconn Res Inst, Taipei, TaiwanUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Lin, Ting-Chun
Kim, Isaac H. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USAUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
Kim, Isaac H. H.
Hsieh, Min-Hsiu
论文数: 0引用数: 0
h-index: 0
机构:
Hon Hai Foxconn Res Inst, Taipei, TaiwanUniv Calif San Diego, Dept Phys, La Jolla, CA 92093 USA