Optical metrology embraces deep learning: keeping an open mind

被引:0
作者
Bing Pan
机构
[1] Beihang University,School of Aeronautic Science and Engineering
来源
Light: Science & Applications | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Optical metrology practitioners ought to embrace deep learning with an open mind, while devote continuing efforts to look for its theoretical groundwork and maintain an awareness of its limits.
引用
收藏
相关论文
共 12 条
  • [1] LeCun Y(2015)Deep learning Nature 521 436-444
  • [2] Bengio Y(2019)U-Net: deep learning for cell counting, detection, and morphometry Nat. Methods 16 67-70
  • [3] Hinton G(2019)Fringe pattern analysis using deep learning Adv. Photonics 1 025001-152
  • [4] Falk T(2019)Fringe pattern denoising based on deep learning Opt. Commun. 437 148-15115
  • [5] Feng SJ(2019)One-step robust deep learning phase unwrapping Opt. Express 27 15100-1510
  • [6] Yan KT(2019)Temporal phase unwrapping using deep learning Sci. Rep. 9 046105-undefined
  • [7] Wang KQ(2020)Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement APL Photonics 5 210021-undefined
  • [8] Yin W(2022)Deep-learning-enabled dual-frequency composite fringe projection profilometry for single-shot absolute 3D shape measurement Opto-Electron. Adv. 5 39-undefined
  • [9] Qian JM(2022)Deep learning in optical metrology: a review Light Sci. Appl. 11 1507-undefined
  • [10] Li YX(2021)Deep-learning-based fringe-pattern analysis with uncertainty estimation Optica 8 undefined-undefined