Generalizing the ENO-DB2p transform using the inverse wavelet transform

被引:0
作者
Francesc Aràndiga
Rosa Donat
José J. Noguera
机构
[1] Universitat de València,Departament de Matemàtica Aplicada
来源
Numerical Algorithms | 2017年 / 74卷
关键词
Wavelets; Essentially non-oscillatory; ENO; Multiresolution framework; Orthogonal wavelets;
D O I
暂无
中图分类号
学科分类号
摘要
The essentially non-oscillatory (ENO)-wavelet transform developed by Chan and Zhou (SIAM J. Numer. Anal. 40(4), 1369–1404, 2002) is based on a combination of the Daubechies-2p wavelet transform and the ENO technique. It uses extrapolation methods to compute the scaling coefficients without differencing function values across jumps and obtains a multiresolution framework (essentially) free of edge artifacts. In this work, we present a different way to compute the ENO-DB2p wavelet transform of Chan and Zhou which allows us to simplify the process and easily generalize it to other families of orthonormal wavelets.
引用
收藏
页码:175 / 198
页数:23
相关论文
共 42 条
  • [1] Amat S(2001)Data compression with ENO schemes: a case study Appl. Comput. Harmon. Anal. 11 273-288
  • [2] Aràndiga F(2002)Tensor product multiresolution analysis with error control for compact image representations J. Signal Process. 82 587-608
  • [3] Cohen A(2000)Nonlinear multiscale decompositions: the approach of A. Harten Numerical Algorithms 23 175-216
  • [4] Donat R(2002)ENO-Wavelet transforms for piecewise smooth functions SIAM J. Numer. Anal. 40 1369-1404
  • [5] Garcia G(2000)Adaptive wavelet thresholding for image denoising and compression IEEE Trans. Image Process. 9 1532-1546
  • [6] von Oehsen M(1997)Nonlinear wavelet transforms for image coding Proceedings of the 31st Asilomar Conference on Signals, Systems, and Computers 1 662-667
  • [7] Amat S(2008)Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques Appl. Comput. Harmon. Anal. 24 225-250
  • [8] Aràndiga F(1988)Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 41 909-996
  • [9] Cohen A(1994)Ideal spatial adaptation by wavelet shrinkage Biometrika 81 425-455
  • [10] Donat R(1995)Adapting to unknown smoothness via wavelet shrinkage J. Amer. Statist. Assoc. 90 1200-1224