Gradient estimate of an eigenfunction on a compact Riemannian manifold without boundary

被引:0
作者
Yiqian Shi
Bin Xu
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
Annals of Global Analysis and Geometry | 2010年 / 38卷
关键词
Laplace-Beltrami operator; Eigenfunction; Gradient estimate; Primary 35P20; Secondary 35J05;
D O I
暂无
中图分类号
学科分类号
摘要
Let eλ(x) be an eigenfunction with respect to the Laplace-Beltrami operator ΔM on a compact Riemannian manifold M without boundary: ΔMeλ = λ2eλ. We show the following gradient estimate of eλ: for every λ ≥ 1, there holds \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda\|e_\lambda\|_\infty/C\leq \|\nabla e_\lambda\|_\infty\leq C\lambda\|e_\lambda\|_\infty}$$\end{document}, where C is a positive constant depending only on M.
引用
收藏
页码:21 / 26
页数:5
相关论文
共 14 条
  • [1] Brüning J.(1975)Über knoten von eigenfunktionen des Laplace-Beltrami operators Math. Z. 158 15-21
  • [2] Donnelly H.(1988)Nodal sets of eigenfunctions on Riemannian manifolds Invent. Math. 93 161-183
  • [3] Fefferman C.(2002)Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary Commun. Partial Differential Equ. 27 1283-1299
  • [4] Grieser D.(1968)The spectral function of an elliptic operator Acta Math. 88 341-370
  • [5] Hörmander L.(2008)Local asymmetry and the inner radius of nodal domain Comm. Partial Differential Equ. 33 1611-1621
  • [6] Mangoubi D.(1991)Metric properties of eigenfunctions of the Laplace operator on manifolds Ann. Inst. Fourier (Grenoble) 41 259-265
  • [7] Nadirashvili N.S.(1989)On the boundedness of functions of pseudo-differential operators on a compact manifolds Duke Math. J. 59 709-736
  • [8] Seeger A.(1987)On the convergence of Riesz means of compact manifolds Ann. Math. 126 439-447
  • [9] Sogge C.D.(2002)Eigenfunction and Bochner-Riesz estimates on manifolds with boundary Math. Res. Lett. 9 205-216
  • [10] Sogge C.D.(2004)Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold Ann. Glob. Anal. Geom. 26 231-252