Wavelet approximation and Fourier widths of classes of periodic functions of several variables. IIПриближение всплесками и поперечники Фурье классов периодических функций многих переменных. II

被引:0
|
作者
Д. Б. Бaзaрхaноь
机构
[1] Инсmumуm мamемamuкu,
来源
Analysis Mathematica | 2012年 / 38卷
关键词
Fourier Analysis; Science Publ; Function Space; Periodic Function; Nova Science Publ;
D O I
暂无
中图分类号
学科分类号
摘要
Estimates sharp in order for Fourier widths of the classes \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B_{pq}^{sm} (\mathbb{T}^k ) $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_{pq}^{sm} (\mathbb{T}^k ) $$\end{document} of Nikol’skii-Besov and Lizorkin-Triebel types, respectively, in the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ L_r (\mathbb{T}^k ) $$\end{document} are established for a certain range of the parameters s, p, q, r (here s ∈ (0,∞)n, 1 ≤p, r, q ≤∞, 1 ≤ n ≤ k, m = (m1, …,mn) ∈ ℕn: m1 + … + mn = k).
引用
收藏
页码:249 / 289
页数:40
相关论文
共 50 条