The additive consistency measure of fuzzy reciprocal preference relations

被引:0
作者
Yejun Xu
Xia Liu
Huimin Wang
机构
[1] Hohai University,Business School
[2] Hohai University,State Key Laboratory of Hydrology
来源
International Journal of Machine Learning and Cybernetics | 2018年 / 9卷
关键词
Fuzzy reciprocal preference relation; Additive consistency; Group decision making;
D O I
暂无
中图分类号
学科分类号
摘要
Fuzzy reciprocal preference relations (FPR) are one of the most common preference relations which decision makers (DMs) express their comparison information in decision making, and the consistency of preference relations is an important step for reasonable and reliable decision making. Based on the concept of deviation between two matrices, we develop some consistency measures for FPRs to ensure that the DMs are being neither random nor illogical. A consistency index (CI)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(CI)$$\end{document} and the threshold (CI¯)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\overline{CI})$$\end{document} of FPRs are defined to measure whether a FPR is of acceptable consistency. For FPRs with unacceptable consistency, an optimization method and two iterative algorithms are presented to improve its consistency and the process terminates until the CI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$CI$$\end{document} is controlled within the threshold CI¯.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{CI}.$$\end{document} Furthermore, one of algorithms is extended to handle group decision making (GDM) of FPRs. Finally, two examples and comparative analysis are furnished to demonstrate the effectiveness of the developed methods.
引用
收藏
页码:1141 / 1152
页数:11
相关论文
共 78 条
[1]  
Dong YC(2008)On consistency measures of linguistic preference relations Eur J Oper Res 189 430-444
[2]  
Xu YF(2002)An approach to multiple attribute decision making based on fuzzy preference information on alternatives Fuzzy Sets Syst 131 101-106
[3]  
Li HY(2007)Incomplete pairwise comparison and consistency optimization Eur J Oper Res 183 303-313
[4]  
Fan ZP(2007)A consensus model for group decision making with incomplete fuzzy preference relations IEEE Trans Fuzzy Syst 15 863-877
[5]  
Ma J(2014)A review of soft consensus models in a fuzzy environment Inf Fusion 17 4-13
[6]  
Zhang Q(2007)Group decision-making model with incomplete fuzzy preference relations based on additive consistency IEEE Trans Syst Man Cybern Part B Cybern 37 176-189
[7]  
Fedrizzi M(2004)Some issues on consistency of fuzzy preference relations Eur J Oper Res 154 98-109
[8]  
Giove S(2000)Linguistic decision analysis: steps for solving decision problems under linguistic information Fuzzy Sets Syst 115 67-82
[9]  
Herrera-Viedma E(1984)A statistical approach to Saaty’s scaling method for priorities J Math Psychol 28 467-478
[10]  
Alonso S(2002)Robust estimation of priorities in the AHP Eur J Oper Res 137 110-122