Continuous Duality of Limits and Colimits of Topological Abelian Groups

被引:0
作者
R. Beattie
H.-P. Butzmann
机构
[1] Mount Allison University,Department of Mathematics and Computer Science
[2] Universität Mannheim,Fakultät für Mathematik und Informatik
来源
Applied Categorical Structures | 2008年 / 16卷
关键词
Continuous convergence; Duality of topological groups; Limits; Colimits; Pontryagin duality; 43A40; 54A20; 18A30;
D O I
暂无
中图分类号
学科分类号
摘要
In the category Cgp of convergence groups, the continuous dual Γc( ·) is a left adjoint and takes colimits to limits in Cgp. In general, limits are not taken to colimits. In this paper we show that, if we restrict ourselves to limits of topological groups, then reduced projective limits are carried to inductive limits in Cgp. As a consequence of this we show that the inductive limit in Cgp of locally compact topological groups is reflexive if it is separated.
引用
收藏
页码:535 / 549
页数:14
相关论文
共 11 条
[1]  
Ardanza-Trevijano S.(2005)The Pontryagin duality of sequential limits of topological Abelian groups J. Pure Appl. Algebra 202 11-21
[2]  
Chasco M.J.(1993)Convergence Appl. Categ. Structures 1 361-384
[3]  
Beattie R.(2003) spaces Topology Appl. 133 209-223
[4]  
Butzmann H.-P.(1994)Topologies on the direct sum of topological Abelian groups Arch. Math. 63 264-270
[5]  
Chasco M.J.(1948)Binz–Butzmann duality versus Pontryagin duality Duke Math J. 15 649-658
[6]  
Dominguez X.(1964)Extensions of Pontrjagin duality I: infinite products Math. Ann. 153 150-162
[7]  
Chasco M.J.(2002)Some examples on linear topological spaces Topology Appl. 120 403-426
[8]  
Martin-Peinador E.(undefined)Coproducts of abelian topological groups undefined undefined undefined-undefined
[9]  
Kaplan S.(undefined)undefined undefined undefined undefined-undefined
[10]  
Kōmura Y.(undefined)undefined undefined undefined undefined-undefined