On the Principal Curvatures of Complete Minimal Hypersurfaces in Space Forms

被引:0
作者
Rosa M. B. Chaves
L. A. M. Sousa
B. C. Valério
机构
[1] Universidade de São Paulo,Instituto de Matemática e Estatística
[2] Universidade Federal do Estado do Rio de Janeiro,Departamento de Matemática
来源
Results in Mathematics | 2021年 / 76卷
关键词
Complete minimal hypersurfaces; Gauss–Kronecker curvature; scalar curvature; Primary 53C42; 53A10;
D O I
暂无
中图分类号
学科分类号
摘要
In recent decades, there has been an increase in the number of publications related to the hypersurfaces of real space forms with two principal curvatures. The works focus mainly on the case when one of the two principal curvatures is simple. The purpose of this paper is to study a slightly more general class of complete minimal hypersurfaces in real space forms of constant curvature c, namely those with n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{n}-1$$\end{document} principal curvatures having the same sign everywhere. From assumptions on the scalar curvature R and the Gauss–Kronecker curvature K we characterize Clifford tori if c>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c > 0$$\end{document} and prove that K is identically zero if c≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \le 0$$\end{document}.
引用
收藏
相关论文
共 48 条
  • [1] Alías LJ(2004)Hypersurfaces with constant mean curvature and two principal curvatures in An. Acad. Brasil. Ciênc. 76 489-497
  • [2] de Almeida SC(2005)Hypersurfaces with two principal curvatures in Mat. Contemp. 28 51-62
  • [3] Brasil A(2011)The Gauss–Kronecker curvature of minimal hypersurfaces in four-dimensional space forms Math. Z. 267 523-533
  • [4] Almeida SC(2005)Hypersurfaces of Glasg. Math. J. 47 149-153
  • [5] Brasil A(2007) with two distinct principal curvatures J. Math. Anal. Appl. 329 408-414
  • [6] Asperti AC(1993)A new characterization of hyperbolic cylinder in anti-de Sitter space J. Differ. Geom. 37 523-534
  • [7] Chaves RMB(2012)On minimal hypersurfaces with constant scalar curvatures in J. Math. Anal. Appl. 393 166-176
  • [8] Sousa LAM(1993)New characterizations for hyperbolic cylinders in anti-de Sitter spaces Nagoya Math. J. 131 127-133
  • [9] Barbosa JN(1983)A characterization of complete Riemannian manifolds minimally immersed in the unit sphere Trans. Am. Math. Soc. 277 685-709
  • [10] Cao L(1968)Rotation hypersurfaces in spaces of constant curvature Am. Math. Mon. 75 396-397