Generalized pseudo-EMV-effect algebras

被引:0
作者
Anatolij Dvurečenskij
Omid Zahiri
机构
[1] Mathematical Institute,
[2] Slovak Academy of Sciences,undefined
[3] Faculty of Sciences,undefined
[4] Palacký University Olomouc,undefined
来源
Soft Computing | 2019年 / 23卷
关键词
Effect algebra; Generalized effect algebra; Generalized pseudo-effect algebra; Riesz decomposition property; Pseudo-MV-effect algebra; Generalized EMV-effect algebra; Pseudo-MV-effect algebra; Two-valued state;
D O I
暂无
中图分类号
学科分类号
摘要
EMV-algebras were recently introduced in Dvurečenskij and Zahiri (Fuzzy Sets Syst, 2019. https://doi.org/10.1016/j.fss.2019.02.013) as new structures generalizing both MV-algebras and Boolean rings. These algebras do not assume that they contain a top element. We present a non-commutative generalization of EMV-algebras, called pseudo-EMV-algebras. We show how from a pseudo-EMV-algebra we can derive a generalized pseudo-EMV-effect algebra and conversely, from a generalized effect algebra with a stronger type of the Riesz decomposition property we can derive a pseudo-EMV-algebra. We show that every generalized pseudo-EMV-effect algebra without top element can be embedded into a pseudo-MV-effect algebra with top element as a maximal and normal ideal of the pseudo-MV-effect algebra.
引用
收藏
页码:9807 / 9819
页数:12
相关论文
共 44 条
[1]  
Birkhoff G(1936)The logic of quantum mechanics Ann Math 37 823-834
[2]  
von Neumann J(2018)Generalized EMV-effect algebras Int J Theor Phys 57 2267-2279
[3]  
Borzooei RA(1958)Algebraic analysis of many valued logics Trans Am Math Soc 88 467-490
[4]  
Dvurečenskij A(1998)Generalized Boolean algebras in lattice-ordered groups Order 14 295-319
[5]  
Sharafi AH(2002)Pseudo MV-algebras are intervals in J Aust Math Soc 72 427-445
[6]  
Chang CC(2003)-groups J Aust Math Soc 74 121-143
[7]  
Conrad P(2003)Central elements and Cantor–Bernstein’s theorem for pseudo-effect algebras Soft Comput 7 441-445
[8]  
Darnel MR(2001)Blocks of pseudo-effect algebras with the Riesz interpolation property Int J Theor Phys 40 685-701
[9]  
Dvurečenskij A(2001)Pseudoeffect algebras. I. Basic properties Int J Theor Phys 40 703-726
[10]  
Dvurečenskij A(2002)Pseudoeffect algebras. II. Group representation Order 19 127-146